AD-A131 289  COMPUTER VISION RESEARCH AND ITS APPLICATIONS TO
AUTOMATED CARTOGRAPHY(U) SR1 INTERNATIONAL MENLO PARK
CA M A FISCHLER 27 JUL 83 MDA903-83-C-0027

UNCLASSIFIED F/G 8/2




.0 =82 2
Lo £

el £
T
= llee
2 s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963.a




COMPUTER VISION RESEARCH
AND ITS APPLICATIONS
TO AUTOMATED CARTOGRAPHY

First Semiannual Technical Report
Covering the period December 10, 1982 to June 10, 1883

ADAL3128°

Contract Amount: $3,654877
Effective Date: December 10, 1982
Expiration Date: September 30, 1985
July 27,1983

By: Martin A. Fischler, Program Director
Principal Investigator, (415)859-5106

Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Cdr. Ronald Ohlander, Program Manager
Information Processing Techniques Office

M BTN e N Y U T S (RS T I E

Contract No. MDA903-83-C-0027

DARPA Order No. 3862 and AMD 8

Program Code No. 3D30, Program Element 61101E
SRI Project 5355

R A e

PINRY:

Approved for public retease; distribution unlimited.

EZe e

z E The views and conclusions contained in this document are those of the authors
i o and should not be interpreted as necessarily representing the official policies,
D elther expressed or implied, of the Defense Advance Research Projects Agency or .
f ) the United States Government. . P
‘ ) T e i“
i N SRI International L e . A N
£ —- 333 Ravenswood Avenue 2 SO o N
£, Menlo Park, California 94025 % 1
[ ] (415) 326-8200 A AUG1 G983 i
7] —_ Cable: SRI INTL MPK I i
: (— TWX: 910-373-2048 eh?
H
|
I

g3 o0s 08 001




"Illlllllllll-'.l'!lllllll!"-l'!lll-lln-lnn-n—--——--—-_ . : S

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Daete Entered)
READ INS S
REPORT DOCUMENTATION PAGE BEFORE COMPL BTiNG FORM
[T REPORT NUMBER 2, GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
- N
First Semiannual Technical Rpt. {‘) D - /j / 5/ ) / /
& TITLE (end Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
Semiannual Technical
Computer Vision Research and Its Applications 12/10/82 to 6/10/83
to Automated Cartography 6. PERFORMING ORG. REPORT NUMBER
5355 lst Semiannual Tech.
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Martin A. Fischler MDA903-83-C-0027
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
SRI International
333 Ravenswood Avenue Program Code No. 3D30
Menlo Park, California 94025 Program Element 61101E
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency July 27, 1983
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, Virginia 22209 44
T4, MONTTORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | '5. SECURITY CLASS (of this report)
DCASMA, San Francisco
1250 Bayhill Drive Unclassified
San Bruno, California 94066 1Sa, ggﬁééatlglCATlON/DOVINGRADING

' OISTRIBUTION STATEMENT (of thia Report)

Approved for public release distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in lock 20, I! difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identily by block numbar)

image understanding, computer vision, automated cartographv, feature
extraction, stereo compilation, linear delineation

\ 1,

20. Aaizﬁ:‘;(ﬁm!muo on reverse side If necessary and identifly by block number) ,

. principal objective in this research program is to obtain solutions
to fundamental problems in computer vision; particularly those problems that
are relevant to the development of an automated capability for interpreting
aerial imagery and the production of cartographic products.

Our plan is to advance the state of the art in selected core areas such
as stereo compilation, feature extraction, linear delineation, and image -

(CONTINUED ON NEXT PAGE)

DD "Oﬂ" 1473 €oiTion OF 1 NOV 68 13 OBSOLETE

JAN 73 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ()W‘hon Data Entered) ‘




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

o ]

o

1 allow a human operator to communicate with the computer at a problem
oriented level, and guide the behavior of the low level interpretation
algorithms doing detailed image analysis.

Finally, we plan to use the DARPA/DMA Testbed as a mechanism for
transporting both our own and IU community advances, in image interpretation
and scene analysis, to DMA, ETL, and other members of the user community.‘r

7 |

1
“Imatching; also, to develop an "éxpert system® control structure which will ]
|

J

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)




CONTENTS
I INTRODUCTION e e e e e e e e e e
II  RESEARCH PLANS AND PROGRESS e e e v e e e e e

A. Development of Methods for Modeling and Using
Physical Constraints in Image Interpretation. .

B. Stereo Compilation: Image Matching and Interpolation

C. Feature Extraction: Scene Description, Partitioning,

and Labeling . . . .. « .+ .« .
D. Linear Delineation and Partitioning . .

REFERENCES e s e e e s e s e s e s

APPENDICES

A THREE-DIMENSIONAL SHAPE FROM LINE DRAWINGS o e e e e

B THE RELATIONSHIP BETWEEN IMAGE IRRADIANCE AND SURFACE
ORIENTATION . . ¢« « ¢« o ¢« o o« o o

c FRACTAL-BASED DESCRIPTION OF NATURAL SCENES . . . . .

D PERCEPTUAL ORGANIZATION AND CURVE PARTITIONING o e e




ABSTRACT

Our principal objective in this research program is to obtain
solutions to fundamental problems in computer vision; particularly those
problems that are relevant to the development of an automated capability
for interpreting aerial imagery and the production of cartographic

products.

Our plan is to advance the state of the art in selected core areas
such as stereo compilation, feature extraction, linear delineation, and
image matching; also, to develop an "expert system” control structure
which will allow a human operator to communicate with the computer at a
problem oriented 1level, and guide the behavior of the 1low level

interpretation algorithms doing detailed image analysis.

Finally, we plan to use the DARPA/DMA Testbed as a mechanism for
transporting both our own and IU community advances, in image
interpretation and scene analysis, to DMA, ETL, and other members of the

user community.
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1 INTRODUCTION

A major focus of our current work is the construction of an Expert
System for Stereo Compilation and Feature Extraction. Our intent in
this effort 1is to develop a system that provides a framework for
allowing higher level knowledge to guide the detailed interpretation of

imaged data by autonomous scene analysis techniques. Such a system




would allow symbolic knowledge, provided by higher level knowledge

sources, to automatically control the selection of appropriate
algorithms, adjust their parameters, and apply them in the relevant

portions of the image.

Recognizing the difficulty of completely automating the
interpretation process, the expert system will be structured so that a
human operator can provide the required high level information when
there are no reliable techniques for automatically extracting this
information from the available 1imagery. As new research results become

available, the level of human interaction can be progressively reduced.

The expert system we are building can thus be viewed as an
intelligent user—level interface for guiding semiautomated {image
processing activities. Such a system is envisioned as a rule-based
system with a library of processes and activities, which can be invoked
to carry out specific goals in the domain of cartographic analysis and
stereo reconstruction. The system would depend on the human user for
those types of information not easily extracted from the given imagery,
and allow the computer system to take over in those areas where the

utility of automated analysis has been clearly demonstrated.

Development of the expert system control structure 1is a research
task still 1in an early stage of accomplishment. The remainder of this
report will describe progress in research supporting the development of
potential scene analysis components of the system, as well as other

Image Understanding research of a more basic mature.




II RESEARCH PLANS AND PROGRESS

A. Development of Methods for Modeling and Using Physical Constraints
in Image Interpretation.

Our goal 1in this work is to develop methods that will first allow
us to produce a sketch of the physical nature of a scene and the
illumination and 1imaging conditions, and next permit us to use this
physical sketch to guide and constrain the more detailed descriptive

processes —— such as precise stereo mapping.

Our approach 1is to develop models of the relationship between
physical objects in the scene and the intensity patterns they produce in
an image (e.g., models that allow us to classify intensity edges in an
image as either shadow, or occlusion, or surface intersection, or
material boundaries in the scene); models of the geometric constraints
induced by the projective imaging process (e.g., models that allow us to
determine the location and orientation of the camera that acquired the
image, location of the vanishing points induced by the interaction
between scene and camera, location of a ground plane, etc.); and models
of the illumination and intensity transformations caused by the
atmosphere, light reflecting from scene surfaces, and the film and
digitization processes that result in the computer representation of the

image.

These models, when instantiated for a given scene, provide us with
the desired "physical” sketch. We are assembling a "constraint-based
stereo system” that can use this physical sketch to resolve the
ambiguities that defeat conventional approaches to stereo modeling of
scenes (e.g., urban scenes or scenes of cultural sites) for which the
images are widely separated in either space or time, or for which there

are large featureless areas, or a significant number of occlusions.

Recent publications of our work in this area are cited in the

references {1-4, 9-12]. Also see Appendicies A and B.
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B. Stereo Compilation: Image Matching and Interpolation

We are implementing a complete state-of-the-art stereo system that

produces dense range images from given pairs of intensity images. We

plan to use this system both as a framework for our stereo research, and

as the base component of our planned expert system.

There are five components of this stereo system: a rectifier, a
sparse matcher, a dense matcher, an interpolator, and a projective
display module. The rectifier estimates the parameters and distortions
associated with the imaging process, the photographic process, and the
digitization. These parameters are used to map digitized image
coordinates onto an ideal image plane. The sparse matcher performs two-
dimensional searches to find several matching points in the two images,
which 1t uses to compute a relative camera model. The dense matcher
tries to match as many points as possible in the two images. It uses
the relative camera model to constrain the searches to one dimension,
along epipolar lines. The interpolator computes a grid of range values

by 1interpolating between the matches found by the dense matcher. The

projective display module allows interactive examination of the computed
3-D wmodel by generating 2-D projective views of the model from
arbitrarily selected 1locations in space. Initial versions of all

components of the system have been implemented.

Present research in this task is focused primarily on the image
correspondence (matching) and interpolation problems. With respect to

image matching, the following major issues are being addressed:

* What is a correct match?
* How does one measure the performance of a matcher?
* What causes existing matching techniques to fail?

* How can one improve the performance of matching techniques?

Since there are no reliable analysis techniques for evaluating the
performance of matching algorithms when applied to real world images, we
must evaluate them by extensive testing. To expedite such testing, a

database of 1images and ideal match data (ground truth) 1s being




assembled. For example, we have acquired data from the ETL Phoenix test

site that were produced specifically for testing matching techniques.
Every point in the database we are constructing contains annotations
that indicate the categories of matching problems for that point, and
other information that might be useful to evaluate the performance or

guide the application of matching techniques.

We are currently investigating a hypothesize - verify approach to
local matching. Potential matches are verified by examining the image
for compliance with the assumptions of the matching operator”s model.
For example, area correlation matching operators assume that correctly
registered image patches will differ only by Gaussian noise. A simple
verification technique is to examine the statistics of the point-by-
point difference between the hypothesized alignment of the patches for
conformance with that model. Image anomalies, such as moving objects or
occluding contours, will typically produce a difference image that has a
highly structured geometry, indicating the shape and 1location of the
anomaly. Such anomalous areas can be removed from the region over which
the correlation is computed, and the process iterates until either an
acceptable match criterion is satisfied, or too many points are removed

from the region.

In many cases (e.g., occlusion and featureless areas) local
matching techniques are not capable of producing the required
correspondences over regions of significant extent. We intend to use
the information provided by the "physical sketch” (see previous section)
to detect such situations, and to select alternative means for obtaining

the required depth information.

As 1indicated above, when a stereo pair of images are matched, we
generally can do no better than to compute a sparse depth map of the
imaged scene. However, for many tasks a sparse depth map is inadequate.
We want a complete model that accurately portrays the scene”s surfaces.
To achieve this goal, we must be able to obtain the missing surface

shape information from the shading of the images of the stereo pair.

e




To understand the relationship between image shading and surface
shape, we built a differential model [see references 10 and 11] that
relates shape and shading but, unfortunately, does not provide a
complete basis for a shape recovery algorithm [see reference 12].
However, the information available in 1image shading does allow *he
building of a surface interpolation algorithm that finds a surface that
is consistent with the image shading. We are proceeding with such a

development.

As image shading alone does not provide sufficient information to
find surface orientation, further shape information sources in the image
are needed. We are evaluating additional scene attributes that encode
shape iInformation in their image, and the models necessary to recover

the corresponding shape information.

C. Feature Extraction: Scene Description, Partitioning, and Labeling

Our current research in this area addresses two related problems:
(1) representing natural shapes such as mountains, vegetation, and
clouds, and (2) computing such descriptions from image data. The first
step towards solving these problems is to obtain a model of natural

surface shapes.

A model of natural surfaces is extremely important because we face
problems that seem impossible to address with standard descriptive
computer vision techniques. How, for instance, should we describe the
shape of leaves on a tree? Or grass? Or clouds? When we attempt i35
describe such common, natural shapes using standard shape-primitive
representations, the result is an unrealistically complicated model of
something that, viewed introspectively, seems very simple. Furthermore,
how can we extract 3~D information from the image of a textured surface
when we have no models that describe natural surfaces and how they
evidence themselves in the image? The lack of such a 3-D model has
restricted image texture descriptions to being ad hoc statistical

measures of the image intensity surface.




Fractal functions, a novel class of naturally-arising functions,

are a good choice for modeling natural surfaces because many basic
physical processes (e.g., erosion and aggregation) produce a fractal
surface shape, and because fractals are widely used as a graphics tool
for generating natural-looking shapes. Additionally, we have recently
conducted a survey of natural imagery and found that a fractal model of
imaged 3-D surfaces furnishes an accurate description of both textured
and shaded image regions, thus providing validation of this physics-

derived model for both image texture and shading.

Encouraging progress relevant to computing 3-D information from
imaged data has already been achieved by use of the fractal model. We
have derived a test to determine whether or not the fractal model is
valid for particular image data, developed an empirical method for
computing surface roughness from image data, and made substantial
progress in the areas of shape-from~texture and texture segmentation.
Characterization of image texture by means of a fractal surface model
has also shed considerable light on the physical basis for several of
the texture partitioning techniques currently in use, and made it
possible to describe image texture in a manner that is stable over

transformations of scale and linear transforms of intensity.

The computation of a 3-D fractal-based representation from actual
image data has been demonstrated. This work has shown the potential of
a fractal-based representation for efficiently computing good 3-D
representations for a  variety of natural shapes, including such

seemingly difficult cases as mountains, vegetation, and clouds.

This research 1is expected to contribute to the development of
(1) a computational theory of vision applicable to natural surface
shapes, (2) compact represeutations of shape useful for natural
surfaces, and (3) real-time regeneration and display of natural scenes.
We also anticipate adding significantly to our understanding of the way

humans perceive natural scenes.

Details of this work can be found in Pentland (8], reproduced as

Appendix C to this report.




D. Linear Delineation and Partitioning

A basic problem in machine vision research is how to produce a line
sketch that adequately captures the semantic information present in an
image. (For example, maps are stylized line sketches that depict
restricted types of scene information.) Before we can hope to attack
the problem of semantic interpretation, we must solve some open problems
concerned with direct perception of line-like structure in an image and
with decomposing complex networks of line-like structures into their
primitive (coherent) components. Both of these problems have important

practical as well as theoretical implications.

For example, the roads, rivers, and rail-lines in aerial images
have a line-like appearance. Methods for detecting such structures must
be general enough to deal with the wide variety of shapes they can

assume in an image as they traverse natural terrain.

Most approaches to object recognition depend on wusing the
information encoded in the geometric shape of the contours of the
objects. When objects occlude or touch one another, decomposition of

the merged contours is a critical step in interpretation.

We have recently made significant progress in both the delineation
and the partitioning problems. Our work in delineation [5] is based on
the discovery of a new perceptual primitive that is highly effective in
locating line-like (as opposed to edge-like) structure.

Our work on decomposing linear structures into coherent components
[see reference 6 and Appendix D] is based on the formulation of two
general principles that appear to have applicability over a wide range
of problems in machine perception. The first of these principles
asserts that perceptual decisions must be stable under at least small
perturbations of both the imaging conditions and the decision algorithm
parameters. The second principle is the assertion that perception is an
explanatory process: acceptable precepts must be associated with
explanations that are both complete (i.e., they explain all the data)
and believable (i.e., they are both concise and of limited complexity).




These new delineation and partitioning algorithms have produced
excellent results in experimental tests on real data [see references 5

and 6 and Appendix D].
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THREE-DIMENSIONAL SHAPE FROM LINE DRAWINGS

Stephen T. Barnard and Alex P. Pentland

SRI luternational, 333 Ravenswood Ave., Menlo Park, California 94025

ABSTRACT

The problem of interpreting the shape of a three-dimensional
space curve {rom its two-dimensional perspective image coutour
is considered. Observation of human perception indicates that
a good strategy is to segment the image contour in such a way
as to obtain approximately planar segments. The orientation of
the osculating plane (the plane in which the space curve lies) can
then be estimated for these segments, and the three-dimensional
shape recovered. The assumption of spatial isotropy is used
to derive the theoretical results needed to formulate such an
estimation strategy. The resulting estimation strategy allows a
single three-dimensional structure (up to a single Necker revcrsal)
to be assigned to any smooth image contour. An implementation
is described and shown to produce an interpretation that is quite
similar to the analytically correct one in the case of a helix, even
though a helix has substantial torsion. The general applicability
of the algorithm is discussed.

I Introduction

Much recent vision research has emphasired the impor-
tance of image contour for shape interpretation [1,2,3,4,5,6,7|.
Tenenbaum and Barrow [1) argue that image contour, for ex-
ample. is dominant over shape from shading. Pentland (8] has
presented examples in which the addition of a contour substan-
tially improved the interpretation of a shaded surface. It seems
that contour is one of the strongest sources of information for
shape perception.

One source of evidence of the strength of contour information
is line drawings. When we examine a line drawing, our perception
of the three-dimensional shape implied by such a drawing is
pearly always clear and unambiguous. How can we account for
this, given that purely geometrical constraints admit of an infinite
pumber of valid interpretations?

A. An Observation About Human Perception

When we observe line drawings such as those in Figure 1
(a). we have a clear perception of a non-planar three-dimensional
structure. Notice that if we were to segment each of these draw-
ings at the circled points, each of the resulting segments would
have the same shape as they did when they were still hooked
together and would be approximately planar, as is shown in
Figure 1(b). Thus, for these line drawings the problem of recover-
ing the three-dimensional structure can be reduced to the prob-
lems of (1) segmenting the curve into perceptually planar seg-
ments, and (2) finding the plane that contains each of the curve
segments (the oaculating plane) [9]. Once we know the orienta-
tion of the plane which contains a curve segment we can then
easily determine its three-dimensional shape.

* The research reported berein was supported by the Defense
Advanced Research Projects Agency under Contract No. MDA
903-83-C-0027; this contract is monitored by the U. S. Army
Engincer Topographic Laboratory. Approved for public rclease,
distribution unlimited.
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Figure 1. (a) Some Line Drawings, (b) Their Planar Subregions.

If we “by hand” try to segment image contours into planar
regions, we find that the strategy can be successfully applied
to a surprisingly large number of naturally-occurring image con-
tours. For some contours, however, it is not obvious how well
this strategy will work, primarily because there are no points
which segment the space curve into planar regions. An example
of such a curve is the helix shown in Figure 2 (a). Nonetheless,
it may still be possible to obtain a good approximation of the
three-dimensional structure of such a curve using this strategy.

B. A Strategy For Recovering Three-Dimensional Shape

This observation about human perception leads to the fol-
lowing processing strategy:

(1) Segment the image contour in such a way that each
segment is likely to comprise a projection of a planar segment
of the space curve.

(2} Calculate the planes implied by the segments from (1).

(3) Assemble the results of (2) into an estimate of the shape
of the entire space curve.

The specific criteria for the initial segmentation are not dealt
with here. It is clear, however, that the image contour should
be scgmented at singular points of curvature (maxima, minima,
and inflection points). Hoffman and Richards {10] bave presented
a theory of curve segmentation that addresses this issue. Our
approach will be to temporarily ignore the segmentation problem
and to simply estimate the orientation of parts of the space curve
from many local parts of the image contour. If valid results are
forthcoming with this approach the metbod can only be improved
with more elaborate segmentation.

C. Modeling the Space Curve

We shall model a space curve in the conventional way, as a
three-dimensional veetor function x(s) of one parameter & which
is assumed to be a natural parameter, ie., |dx{s)/ds| == 1. The
shape of such a curve is completely determined by two properties
that are scalar functions of #: curvature, x(a), and torsion, r{s) [9].
Curvature is always nounegative; only straight lines and inflection
poiuts have rero curvature. Torsion may be intuitively defined as
the amount of “twist™ in the curve at a point o. Another way to
visualize torsion is as the degree to which the osculating plane
(the plane which contains the curve) is changing. Only planar

A



curves have zero torsion everywhere. Unlike curvature, torsion
may he either negative or positive.

The presence of torsion is not directly evident in the image.
It simply results in more or less foreshortening as the osculating
plane of the contour varies. The eflects of torsion, therefore, can
be exactly mimicked by changes in curvature, and vice versa.

II Theory of Contour Interpretation

Not all three-dimensional interpretations of an image con-
tour are equally likely. If we assume that spatial isotropy holds,
then we know that viewer position is independent of the shape of
the curve - - which allows us to make a reasonable guess about
the latter's three-dimensional shape {8]. The first step towards a
guess at the space curve's shape is the following proposition:

Proposition (Zero Torsion). The maximum-likelihood
estimate of the torsion of the space curve is sero (i.e., no
“twisting” of the curve).

This proposition follows because the assumption of spatial
isotropy implies that the viewer's position and the shape of the
space curve are mutually independent. Thus, pot only is it un-
likely that significant features of the curve will be hidden from
view by coincidental alignment of the viewer and the curve, but,
conversely, it is likely that the viewed scene will not change much
with small changes in viewing ‘position.' The appearance of a
curve with substantial torsion’® will change considerably with
small changes in viewer position; if we assume spatial isotropy,
therefore, we must expect that the torsion of the curve will be
small.

Furthermore, given that spatial isotropy implies that the
viewer position and the shape of the curve are mutually inde-
pendent, the torsion of the curve must then also be independent
of viewer position. Consequently, the torsion of the curve is as
likely to be positive as negative, and thus the mean value (and
maximum-likelihood estimate) for the magnitude of the torsion
is tero! . The probability that the torsion is small implies this
estimate will generally be a good one.

A. Estimation With The Assumnption Of Zero Torsion

Even if we assume that torsion is zero (i.e., the space curve
is planar), there is still a two-parameter set of space curves that
could have generated that imaged contour. The two parameters
correspond to the two degrees of freedom of the osculating plane.

Assume that we are given a small portion of an imaged
contour, and asked to estimate the three-dimensional shape of
the space curve which generated that image. If we measure the
position and curvature at three points on the imaged contour,
then we can uniquely define an elliptical are that fits the image
data. By the previous proposition, this elliptical arc is most likely
caused by a space curve that is either an arc of a circle or of an
ellipse, as those are the two planar (eero torsion) shapes which
can project to an ellipsett

Previous research ({2], {12]) bas shown that the maximum-

*This is often referred to as the assumption of general position.
Thas, spatial isotropy implies general viewing position.

**As a function of position on the image contour rather than as
a function of s

'Note that at places where the curvature is zero — straight
segments and inflection points ~— the torsion is not defined and
may arbitrarily be taken to be zero. That is, the osculating plane
may be changed freely at these points without affecting the shape
of the space curve.

1 This i true of both perspective and orthographic projection,
however, we will deal exclusively with the more general case of
perspective foreshortening.

likelihood estimate of the space curve's shape is given by thke
following proposition (see also [2]):

Proposition (Planar Interpretation). Given an ellip-
tical segment of an image contour and that the space
curve is planar, the maximum likelihood estimate of the
space curve’s three-dimensional shape is & segment of a
circle,

Barpard [12] has constructed a maximum entropy estimator
that implements this proposition for perspective images and that
is tolerant of digitization noise. Operating under the assump-
tion that the space curve has tero torsion, it chooses the oricnta-
tion that maximizes the entropy of backprojected image contour
curvature measurements. That is, curvature is first measured
at several points in the image contour, then the curvatures of
bypothetical plapar space curves of essentially all orientations are
computed by backprojection, and, finally, the orientation that
leads to the space curve of most uniform curvature (in the sense
of maximum entropy) is selected. In general, three image con-
tour curvature measurements are sufficient for an unambiguous
maximum-entropy interpretation (ap to s Necker reversal).

Il Three-Dimensional Estimation

Now let us return to the general problem of estimating the
shape of the space curve, given a smooth imaged conmtour. Let
us first take three curvature measurements along the imaged
contour. These three measurements define an ellipse. As just
described, this Icads to a circular interpretation of the space
curve. Now suppose that we have additional image contour cur-
vature measurements. There are, then, two cases to consider:

First case: the new points fit on the same ellipse. In
the first case we have quite strong evidence of the space curve's
shape. For, if the osculating plane were changing, the curvature
would have to be changing also — and in just such a manner
as to exactly cancel (in the image) the effect of the changing
osculating plane. Similarly, if the curvature of the space curve
were changing, the osculating plane would have to change just
exactly cunough to cancel the eflect of the changing curvature.
As such a “conspiracy” to cancel the visible eflects of change is
unlikely (a direct violation of general position), we must conclude
that there was neither torsion nor change in curvature, and, thus,
therc is a great (in fact, maximum) likelihood that the new image
curvature measurements result from the same circular space curve
defined by the first three measurements.

Second case: the new points don’t fit on the same
ellipse. What if the additional measurements lie off the ellipse
defined by the first three measurements? Then we can be certain
that either the curvature or the osculating plane (or both) of
the space curve has changed. This new point is, therefore, a
possible place to segment the curve. What we must do when we
encounter such a point is advance along the image contour until
we are completely past the point, and obtain a new estimate of
the space curve's osculating plane. If the new osculating plane
has the same orientation as the previous osculating plane, then
we have cvidence that the space curve continues to be planar,
and we should not segment the curve. If, however, we obtain
a different orientation for the osculating plane, then we should
segment the space curve and begin a new planar segment of the
curve.

As any smooth image contour may be closely approximated
by portions of ellipses and straight lines® , this interpreta-
tion strategy will yield a single interpretation for the three-

*Ouly the third and higher derivatives of the imaged contour
that will fail to be exnctly matehed. People, it should be noted.
are very poor obscrvers of changes in the third derivatives of an
image contour.




dimensional shape of the space curve (up to Necker reversals).
Further, this interpretation will be the most likely interpreta-
tion on a point-by-point basis. It should be noted that the first
two steps of this estimation strategy are similar to the strategy

proposed in [1].
IV An Example

The interpretation strategy has been implemented and ap-
plied to a synthetic image of a helical space curve. The belix
example is a good test because a helix bas significant torsion
everywhere, thus, distinguished segmentation points do not ex-
ist and it is pot clear what the estimation strategy will do. If
we can recover the belical shape of the space curve with some ac-
curacy, we shall have demonstrated that the estimation strategy
can perform even when no good segmentation is available.

Figure 2 (a) shows a perspective image of a helix. Figure
2 (b) shows a plot of the spherical indicatrix of the helix. The
spherical indicatrix is a plot of the orientation of the osculat-
ing plane of the space curve. The axes in this plot corresponds
to the azimuth and elevation of the osculating plane. As men-
tioned previously, knowledge of the orientation (azimuth and
elevation) of the osculating plane at each point, together with
the imaged contour, uniquely determines the shape of the space
curve. Thus, the spherical indicatrix is a method of displaying the
three-dimensional shape of the space curve. Figure 2 (¢) shows
the spherical indicatrix estimated for the contour in (a). When
this is compared with the actual indicatrix shown in (b), it is
evident that the three-dimensional shape of the space curve has
been fairly accurately recovered.

Summary. We bave developed s theory for assigning a
three-dimeunsional interpretation to any smooth image contour.
The thcory has been implemented and is undergoing evaluation,
which may lead to further development. The results reported
above indicate that the estimation strategy performs reasonably
well even for cases such as a helix, where the presence of substan-
tial torsion might have led one to expect poor performance.
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ABSTRACT

A formulation of shape from shading is presented in which
surface orientation is related to image irradiance without re-
quiring detailed knowledge of either the scene illumination or
the albedo of the surface material. The case for uniformly
diffuse reflection and perspective projection is discussed in detail.
Experiments aimed at using the formulation to recover surface
orientation are presented and the difficulty of nonlocal computa-
tion discussed. We present an algorithm for reconstructing the
3-D surface shape once surface orientations are known.

1 INTRODUCTION

When the human visual system processes a single image,
e.g., Figure 1, it returns a perceived 3-D model of the world, even
when that image bhas limited contour and texture information.
This 3-D model is underdetermined by the information in the
2-D image: the visual system has used the image data and its
model of visual processing to reconstruct the 3-D world. Whiie
there are many information sources within the image, shading is
an important source. Facial make-up or a cartoonist’s shading,
is an everyday example of the way shape, as perceived by our
buman visual system, is manipulated by shading information.

A primary goal of computer vision is to understand this
process of reconstructing the 3-D world from 2-D image data,
to discover the model, or modcls that allow 2-D data to infer
3-D structure. The focus of this work is the recovery of the 3-D
orientation of surfaces from image shading.

We present a formulation of the shape-from-shading prob-
lem, i.e., recovering 3-D surface shape from image shading,
that is derived under assumptions of perspective projection,
uniformly diffuse reflection,! and constant reflectance. This for-
mulation differs from previous approaches to the problem in that
we neither make assumptions about the surface shape [2), nor
use direct knowledge of the illumination conditions and the sur-

The research reported herein was supported by the Defense Advanced
Research Projects Agency under Contract MDAS03-83-C-0027 and by the
National Aeronautics and Space Administration under Contract NASA
9-18864. These contracts are monitored by the U.S. Army Enginesr
Topographic Laboratory and by the Texas A&M Research Foundation for
the Lyndon B. Johneon Space Center.

'We prefer the expression taotropic ecattering to either untformly dif-
Juee veflection, or Lambertian reflection, as it emphasis that scene
radiance is isotropic. However, uniformly diffuse reflection, and Lambertian
reflection are the terms commonly used to indicate that the acene radiance
is isotropic.

Figure 1 Shape from Shading.

face albedo {3]. The cost we incur for dispensing with these
restrictions is the introduction of higher-order differentials into
the equations relating surface orientation and image irradiance.
The benefits we gain allow us to investigate the strength of the
constraint imposed by shading upon shape. Past attempts to
solve the shape-from-shading problem, as well as our own efforta,
have been aimed at recovering surface shape from image patches
for which the reflectance (albedo) can be considered constant.

Previously we examined the influence exerted by the as-
sumption of uniformly diffusc reflection [1]. and indicated that
the equations relating surface orientation to image irradiance
conld be expected to yield uscful results even in cases in which
the reflection is not uniformly diffuse. In that examination we as-
sumed orthographic rather than perspective projection. A com-
parison of our previons work with this paper, however, shows
that the structure of the formulation is not dependent upon the
projection used,

If we add additional assumptions, e.g., constraints on the
surface type, we can simplify the relationship between surface
oricutation and image irradiance. While it i< not our goal to add
constraints upon surface type. the assumption that the surface
is locally apherical allows the approximate surface orientation to
be recovered by local computation.
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Figure 3 Coordinate Frame. X.Y.Z are the scene coor-
dinates, U,V the image coordinates. and the image plane is located a
distance f from the scene coordinate’s origin - the projection center.
a is the angle between the Z axis (the viewing direction) and the ray
of light from the scene point (z,y, ) to the image point (u,v). ! and
m are the X and Y components of the surface normal n.

2 THE COORDINATE FRAME AND
REPRESENTATION OF SURFACE
ORIENTATION

The coordinate system we use is depicted in Figure 2. X,Y,Z
are the scene coordinates and U,V are the image coordinates.
The image and scene coordinates are aligned so that X and U
axes are parallel, as are the Y and V axes. The U and V axes are
inverted with respect to the X and Y axes, so that positive X and
Y coordinates will correspond to positive U and V coordinates.
The image plane is located at a distance f from the (perspective)
projection center, the origin of the scene coordinates. A ray of
light from the point (£, ¥, z) in the scene to the image point (u, v)
makes an angle a with the viewing direction (i.e., the Z axis).

There are many paramctcrizations of the surface orienta-
tion: we choose to use (I, m), which are the X and Y compounents
of the unit surface normal. In Figure 2, n is the unit normal
of the surface patch located at (z,y.z); { and m are the com-
ponents of this surface normal in the X and Y directions. From
our viewing position we can see at most half the surfaces in the
scene (i.e., those that face the viewer). The Z component of the
aurface normal has the magnitude V't — I¥ — m?, the sign deter-
mining whether the surface is forward-facing (has a positive 7
component), or backward-facing (has a negative Z component).
For large off-axis angle a, we see backward-facing surfaces near
the edges of objects. The two components of the surface normal,
{ and m, do not provide an adequate parameterization of the
surface in this case. Additionally, we need to know the sign of
the Z component. Here we restrict ourselves to forward-facing
surfaces. This minor restriction amounts to assuming that a is

not too large and that we are pot adjacent to an object’s edge.
Consequently, in this discussion we assume that the Z component
of the surface normal is positive and that { and m constitute an
adequate parameterization of scene surfaces.

3 IMAGE IRRADIANCE

The image irradiance equation we use is 4]
Ku,v) = R(l,m)cos*a

where /(u,v) is the image irradiance as a function of the image
coordinates u and v, and R(l,m) is the surface radiance as a
function of ! and m, the components of the surface normal.? The
term cos? a represents the off-axis effect of perspective projec-
tion. When a is small, cos* a is approximately unity; we then
have the more familiar form of the image irradiance equation.
From Figure 2 we see that

I
Vet +o2 + f2
Diflerentiating the image irradiance equation with respect
to the image coordinates u and v, we obtain

cos o =

1'“ = Rily + Rmmy
I'., = Rllu + Rmmv v

I(,u = Rlllu2 + Rmmmu2 + 2Rimlymy + Riluw + Rnmuu
,:m = Rllluz + Rmmmu2 + 2Rimlymy + Rilyy + Rpymyy
If-w = Rulul, + Romm.m, + R,,,.(l.,m., + l‘,mu)

+ Rilyo + Rmmyy

where subscripted variables denote partial differentation with
respect to the subscript(s), and
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?Image irradiance is the light flux per unit area falling on the image, i.e.,
incident Bux density. Scene radiance is the light fux per unit projected area
per unit aolid angle emitted from the scene, i.e., emitted flux density per
unit solid angl~.




If we are to use these expression to relate image measure-
meats, ¢.g., I, to surface parameters | and m, then we must

remove the derivatives of R.

4 UNIFORMLY DIFFUSE REFLECTION

To provide the additional constraints we need for relating
surface orientation to image irradiance, we introduce constraints
that relate properties of R(l,m), — that is, constraints that
specify the relationship between surface radiance and surface
orientation. Such constraints are

(1=P)Ry =01 - m*)Rpm
(Ru = R )im = (F = m*)Rymm

where Ry; is the second partial derivative of R with respect to
{, R,nm i3 the second partial derivative of R with respect to m,
and Ry, is the second partial cross-derivative of R with respect
to { and m.

These two partial differential equations embody the as-
sumption of uniformly diffuse reflection. For uniformly diffuse
reflection, R(l, m) has the form

Rilm)=al+bdmt+eV/I -2 -m2+d ,

wuere a,b,¢, and d are constants, their values depending on
illumination conditions and surface albedo. Note that {,m, and
V1 = = m? are the components of the unit surface normal in
the directions X,Y, and Z. R(l,m) can be viewed as the dot
product of the surface normal vector (I,m, V1 — IZ — mZ) and a
vector (a, , ¢) denoting illumination conditions. As the valucof a
dot product is rotationally independent of the coordinate system,
the scene radiance is indepenadent of the viewing direction —
which is the definition of uniformly diffuse reflection.

It is clearly ecvident that R(I,m) = al + bm +
eVl — B — 2 4+ d satisfies the pair of partial differential equa-
tions given above. In [1] we showed that R(l,m) = al + dm +
eVl — 2 Zm?+d is the solution of the pair of partial differcatial
equations. These partial differential equations are an alternative
definition of uniformly diffuse reflection.

It is worthy of note that R(l,m) = al+bm+ev1 — F — m?+4
d includes radiance functions for multiple and extended illumina-
tion sources, including that for a hemispherical uniform source
such as the sky. Of course, at a sell-shadow edge R is oot
differentiable, so that the surfaces on each side of the sell-shadow
boundary have to be treated separately. The assumption of
uniformly diffuse reflection restricts the class of material surfaces
being considered, not the illumination conditions.

From the constraints for uniformly diffuse reflection, we
derive the relationships

2
m
j;’*le ’
1-r

im

Ry =

le

Rmm =

Substituting these relationships for Ry; and R,.,, in the
expressions for I,,,1%,,.and I,,, we obtain

1 —m? 1-F
() 4 M)+ 2am ) Rim =
I:lu - R‘llﬂl - l{mmuu .
1-m? 1-P2
WA+ meP (- )+ 2lemy | Rim =
"w - Rlye ~ Rymy,
1—m? 1-£
Halu )+ (=) 4 lumy + by Rim =
Iluv = Rilyo ~ Rmmy,
By removing Rin, and substituting the expressions for R;
and R,n. defined by the expressions for I, and I,, we produce

two partial differential equations relating surface orientation to
image irradiance:

abl,, + B0my, ~ aqly, — fymy, = \01'uu - \'1"". ,
ally, + #0m,, ~ abl,, — fémy, = X8I, — 81, .

where

a="rPm,-I'm, |,

B="rl,-I,l, |,

¥ =121 = m®)+ m, (0 = ®) + 2Aymyim

§ = 1,201 = m®)+ m,2(1 = B) + 2AUymylm

0= 10,01 = m*)+ mymy(1 — B)+(lym, + l.m,)im |

x = lym, —lym,

These equations relate surface oriemation to image ir-
radiance by parameter-free expressions. We make no as-
sumptions about surface shape, nor do we peed to know the
parameters specifying illuminant direction, illuminant strength,
and surface albedo. Our assumptions are about the propertics
of reflection in the world; these alone are sufficient to relate
surface orientation to image irradiance. The above eyuations
have been derived for the case of perspective projection; for or-
thographic projection, the primed (/) quantities are replaced by
their umprimed counterparts, e.g.. I', is replaced by I,. The
form of the equations is not a function of the projection used.

5 RECOVERY OF SURFACE
ORIENTATION

It is difficult to solve the equations relating surface orienta-
tion to image irradiance, and thus (o recover surface shape from
obacrved image irradiance. We have used numerous integration
schemes that characterize two distinct approaches. The two
differential equations can be directly integrated in a step-by-step
manner or, given some initial solution, a relaxation procedure
may be employed. The difliculties that arise are twofold: numeri-
cal errors and multiple solutions.

Solutions of the equation x == 0 {the developable surfaces,
e.g., a cylinder) are also solutions of the equations relating sur-
face oricntation to image irradiance. If the image intensities




were known in analytic form, the analytic approach to solving
the equations could then employ boundary conditions to select
the appropriate solution. However, since the analytic form for
the image intensities is unknown, pumerical procedures must
be employed. The use of such procedures to directly integrate
the equations inevitably introduces small errors. Such errors
‘mix in' multiple solutions even when those solutions are incom-
patible with the boundary conditions. Instability of the numeri-
cal scheme seems responsible for the fact that such errors even-
tually dominate the recovered solution. A scheme that is repre-
sentative of our various trials at direct integration is outlined.

We transform our equations into finite-difference cquations
by using a three-point formula for the differentials of { and m. If
{(s, ;) and m(s, j) are the values of { and 1 at the (s, j)th pixel in
the image, then at this pixel we use the finite-differcnce formulas,
i+ 1) =i = 1,5)
=t

lyw = Us+ 1,5)+ Wi — 1, 5)—20(s,5) .,
+L5+D+Ui-1.5-1)
luv = - _"""f" A T
Y+ 17N+l -15+1)
- .

and similar formulas for the other differentials. If we comsider
the 3 x 3 image patch centered on the (s, y)th pixel,

lu

i-1 j it

1] O O &
iflo] O} O
-1 O | O 10O

we could hope that the two finite difference equations, relating
the cighteen values of I and m on the patch, could be solved
explicitly for I(s + 1,5 + 1) and m{i + 1.5 + 1), (the (&) cell).
Such a solution would allow { and m at the (&) cell to be cal-
culated from the I's and m's at the (o) cells. Starting at some
boundary at which we know [ and m at the (o) cells, we can
move along the image's row and then along the successive rows,
calculating [ and m at the (&) cell. However, examination of the
surface-orientation-to-image-irradiance equations shows that we
cannot solve these equations explicitly for 1y, and iy, and that,
consequently, we cannot obtain finite-difference equations that
are explicit in the [ and m of the (&) cell.

We avoid this difficulty by combining the two surface
oricntation-to-image-irradiance equations into one and using sur-
face continuity to provide the additional equation. Removing {y,
and my, from the differential equations, we have

0(6’141‘ - ’7‘;:0' + ﬁ(bmuu - 7"‘!'!') = \(6I'uu - ‘7ll|<v)

Surface continuity requires that Jf, = J &, from which it
follows that

L(1 — m®) + mylm = m,(1 = F) + I,Im

Provided that u and v are small compared with : (e.g., in the
eye or in a standard-format camera), then

1,(1 = m?) + myim = my(1 - ?) + I dm

‘These two equations, which do not involve Iy, or m,,, form a
basis for finite difference equations that calculate { and m at the
{-) cell from values of ! and m at (+) cells.

The results obtained with the above integration scheme,
together with many variations of it, are poor. Accurate values
for | and m are obtained only within approximately five to ten
rows of the known boundary. This is the case for noise-free
image data. These results can be understood by examination
of the finite-difference equations. The explicit expressions for
! and m at the (-) cell are functions of the differences of {
and m at the (+) cells. Such schemes are usually numerically
unstable, making step-by-step integration impossible. While
the failure to find a stable numerical scheme does not imply
that one does not exist, our difficulty highlights the problem
of finding numerical schemes, based on differential models, to
propagate information from known boundaries. (One wonders
whether nature experienced the same difficultics when designing
the human vision system.)

Although the alternative to direct integration, a relaxation
procedure to solve the equations, seems to offer relief from the
numerical instability of direct integration, it nevertheless poses
its own problems. The approach we used parallels the oue in
[3] for solving the image irradiance equation when the surface
albedo and illumination conditions are known. For each image
pixel we form three error terms: the residuals associated with
the two surface-orientation-to-image-irradiance equations, and
with the one surface continutiy equation. Minimizing the sum
of the errors over the whole image with respect to { and m at
each pixel produces an updating rule for | and m at each pixel.
Given an initial solution, i.e.. assignment of values for { and m
at cach pixel, a relaxtion scheme, like the one described, is useful
only if it converges. While the constraint imposed by the under-
lying model is most important in ensuring convergence, the im-
portance of a good initial solution for a relaxation method can-
not be overemphasized. Simplifying the two partial diffcrential
equations (by using additional assumptions) provides a method
for obtaining an good initial solution.

The spherical approximation assumes that we are viewing
a spherical surface. This implies [, = 0, m, =0, and I, = m,,

namely, constant curvature that is independent of direction.
Provided that v and v are small compared with 2, then !, =
0,m, = 0 and I, = m,. For this case, the partial diffcrential
equations become relationships between image irradiance and its




derivatives, on the one hand, and the components of the surface
normal, on the other:

1 :"Lz ! :‘! ,
Im L,
-2 _ L,

Im I,

The spherical-approximation results for perspective projec-
tion are similar to those Pentland was able to obtain [2] for
orthographic projection through local analysis of the surface.
Besides providing a mechanism for cbtaining ag initial solution
for a relaxation-style algorithm, they allow surface oricntation
to be estimated by purely local computation. Such an estimate
will be exact when the surface is locally spherical.

The results of our experiments with relaxation procedures
are easily summarized: the relaxation procedures werc not con-
vergent. While such nonconvergence is hardly unusual, the
reasons for failure, however, are instructive. The residuals as-
sociated with both the surface-orientation-to-image-irradiance
equations, and the surface continuity equations remain small
during the relaxation, even when the solution is starting to
diverge. Of course the residuals are not as small as they are
when on the verge of solution, but they are small enough to
make one believe that a solution has been obtained, particutarly
when the image is not nois>-free. Apparently the equations are
insensitive to particular values of I and m, being more concerned
with the values of I,.l,.m,, and m,. As with direct integration,
relaxation models need boundary conditions to select a particular
solution. We used various boundary conditions in our relaxation
experiments, but it is difficult to believe that a model, appareatly
insensitive to surface orientations, could be overly influenced by
the surface orientations at a boundary.

Our two approaches, direct integration and relaxation, have
not yielded a computational solution to the probicm of recover-
ing surface orientation from shading. The attractiveness of lo-
cal computation is clear; it has neither numerical instability nor
divergent behavior, but the cost it imposes is that assumptious
must be made about surface shape. A compromise betweca
some local computation and some information propagation may
offer an approach that is not overly restrictive in its assump-
tions about surface shape. However. the question needs to be
considered: Is the model undercoustrained? Is shape recovery
dependent on information other than shading? What other in-
formation (that is obtainable from the image), is necessary to
enable the construction of eflective shape-recovery algorithms?

6 RECONSTRUCTION OF THE SURFACE
SHAPE

Surface orientation is not the same as surface shape.
tlowever, once we have obtained the surface orientation as a
function of image coordinates, i.c., {u, v) and m{u, v), we can use
these to reconstruct the surface shape in the scene coordinates
X.Y.7. We dcrive a suitable formula.

Suppose we know the depth 2zp at scene coordinates
(%0, y0, 20), corresponding to (uo, vo) in the image. For the point
(20 + Az,yo + Ay) we use the approximation

a a:z
2(zo + Az,yp + Ay) = z(z0,y0) + A:t5E +Aya—
Tleome 20.%0
Similarly,
a a
Hzy —Az,m—Av)=:(z|.v:)~Azé—z vaz'
z T v 1.0
If 2y = 70 + Az and y, = yo + Ay. then
7, — 29, 0z dz
Az1.n) = Hz0.90) + “1_2“9 7z + 9 )
Tleowo Tley oy,
VY1 — Yo, 02 ad:z
Y Gl )
v %0.¥0 v Z1.9:
Using the perspective transformation u — ~f% and v = -j:

to remove z and y, we obtain

Auy,v1) = z{uo, vo)x
4
2f+ llo( b: l‘lu.l'o + gf L‘I.VI)+ Uu( gi,un vy + g;

— R 1 Ehd B
2 . ’
2’ + u'( ﬁil“o.'o + g: "‘I-VI) + l']( g: Iuo vo + gfl Iu. l'l)
@ — -l 0z _ -
As §: it o and §f = 7;_‘-;":-37. we have the means of

reconstructing the surface in scene coordinates from the values
of surface oricntation in image coordinates.

7 CONCLUSION

In this formulation of the shape-from-shading task. we have
eliminated the need to know the explicit form of the scene
radiance function by introducing higher-order derivatives into
our model. This model is applicable to natural scencry without
any additional assumptions about illumination conditions or
the albedo of the surface material. However, without a com-
putational scheme to reconstruct surface shap from image ir-
radiance we may wonder if we have surrenderey too much. The
difficulties of finding a computational scheme must induce oue
to ask whether the model is underconstrained. Have we applied
too few restrictions, thereby making shape recovery impossible?
Notwithstanding the general concern about underconstraint of
the model, the numerical difficulties encounted makes local com-
putation of scene parameters attractive. Information propaga-
tion methods must always cope with the problem of accamulated
errors. In our model, however, to achieve local computation we
must make assumptions with regard to surface shape. What
other information, besides shading, do we need to know if we are
to recover surface shape? Can we find moderate restrictions that
allow mostly local computation of the surface shape parametcers?
We are actively engaged in the pursuit of such procedures.
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ABSTRACT

This paper addresses the problems of (1) representing
natural shapes such as mountains, treez and clouds, and (2)
computing such a description from tuage data. In order to
solve these problems we must be able to relate natural surfaces
to their images; this requires a good model of natural surface
shapes. Fractal functions are good a choice for modeling natural
surfaces because (1) many physical processes produce a fractal
surface shape, (2) fractals are widely used as a graphies tool for
gencrating natural-looking shapes, and (3) a survey of natural
imagery has shown that the 3-D fractal surface model, trans-
formed by the image formation process, furnishes an accurate
description of both textured and shaded image regions. This
characterization of image regions has been shown to be stable
over transformations of scale and linear transforms of intensity.

Much work has been accomplished that is relevant to com-
puting 3-D information from the image data, and the computa-
tion of a 3-D fractal-based representation from actual image data
has been demonstrated using an image of a mountain. This ex-
ample shows the potential of a fractal-based representation for
efficicntly computing good 3-D representations of natural shapes,
including such seemingly-difficult cases as mountains, clumps of
leaves and clouds.

1. INTRODUCTION

This paper addresses two related problems: (1) representing
natural shapes such as mountains, trees and clouds, and (2)
computing such a description from image data. The first step
towards selving these problems, it appears, is to obtain a model
of natural surface shapes. The task of finding such a model is
extremely important to computer vision because we face prob-
lems that scem impossible to address with standard descriptive
How, for instance, should we describe the shape
of leaves on a tree? Or grass? Or clouds’ When we attempt

techniques,

to describe such common, natural shapes using standard shape-
primitive representations, the result is an unrealistically compli-
cated model of something that, viewed iutrospectively, scems
very simple.

* The rescarch reported herein was supported by the Defense
Advanced Research Projects Agency under Contract No. MDA
903-83-C-0027; this contract is monitored by the U. S. Army
Engincer Topographic Laboratory. Approved for public release,
distribution unlimited.

‘l"iguro 1. Fractal-based mir;diolrs’nf natural shapes, by Mandethrot
and Voss (1)

Furthermore. how can we extract 3-D) information from
the image of a textured surface when we have no models that
deseribe natural surfaces and how they evidence themselves in
the image? The lack of such a 3-D model has generally restricted
image texture descriptions to being ad hoe statistical measures
of the image intensity surface. A good model of natural surfaces
together with the physics of image formation would provide the
analytical tools necessary for relating natural surfaces to their
images. The ability to relate image to surface can provide the
necessary leverage for dealing appropriately with the problems of
finding a good representation for natural surfaces and computing
such a description from the image data.

Even shape-from-shading [22.23] and surface-interpolation
methods [21] are limited by the lack of a 3-D model of natural
surfaces,  Currently all such methods employ the heuristic of
“smoothness™ to relate neighboring points on the surface. Such
heuristies are applicable to many man-made surfaces, of course,
but are demonstrably untrue of most natural surfaces. In order
to apply =uch techniques to natural surfaces, therefore, we must
find a heuristic that is true of natural surfaces. Finding such a
heuristic requires reconrse to a 3-) model of natural surfaces.




Fractal functions seem to provide such a model of natural
surface shapes.  Fractals are a novel class of naturally-
arising functions, discovered primarily by Benoit Mandelbrot.
Maandelbrot and others [1,2,4] bave shown that fractals are
found widely in nature and that a number of basic physical
processes, such as erosion and aggregation, produce fractal sur-
faces. Because fractals look natural to human beings, much
recent computer graphics research has focused on using fractal
processes to simulate natural shapes and textures (see Figure 1),
including mountains, clouds, water, plants, trees, and primitive
animals [3,4,5,6,7]. Additionally, we have recently conducted a
survey of natural imagery and found that a fractal model of
imaged 3-D surfaces furnishes an accurate description of both
textured and shaded image regions, thus providing validation of
this physics-derived model for both image texture and shading
[19).

2. FRACTALS AND THE FRACTAL MODEL

During the last twenty years, Benoit B. Mandelbrot has de-
veloped and popularized a relatively novel class of mathematical
functions known as fractals {1,4]. Fractals are found widely
in nature {1.2,4]. Mandelbrot shows that a number of basic
physical processes, ranging from the aggregation of galaxies to
the curdling of cheese, produce fractal surfaces. One general
characterization is that any process that acts locally to produce
a permanent change in shape will, after innumerable repetitions,
result in a fractal surface. Examples are erosion, turbulent flow
{c.g.. of rivers or lava) and aggregation {e.g., galaxy formation,
meteorite accretion, and snowflake growth). Fractals have also
been widely and successfully used to generate realistic scenes (see
Figure 1), including mountains, clouds, water, plants, trees, and
primitive animals 3,4,5,6,7].

Perhaps the most familiar examples of naturally occurring
fractal curves are coastlines. When we examine a coastline (as
in Figure 1}, we sce a familiar scalloped curve formed by in-
numectable bays and peninsulas. If we then examine a finer-scale
map of the same region, we shall again see the same type of
curve. It turns out that this characteristic scalloping is present
at all scales of examination (2], i.e., the statistics of the curve
are invariant with respect to transformations of scale. This fact
causcs problcms when we attempt to measure the length of the
coastline, beeause it turns out that the length we are measur-
ing depends not only on the coastline but also on the length of
the mcasurement tool itself [2]! This is because, whatever the
size measuring tool selected, all of the curve length attributable
to features smaller than the size of the measuring tool will be
missed. Mandelbrot pointed out that, if we generalize the notion
of dimension to include fractional dimensions (from which we
get the word “fractal™), we can obtain a consistent measurement
of the coastline’s length.

The definition. A fractal is defined as a set for which
the Hauudorfl-Besicovich dimension is strictly larger than the
topological dimension. Topological dimension corresponds to
the standard, intuitive definition of “dimension.” Ilausdorfl-
Besicovich dimension D, also referred to as the fractal dimen-

c-2

sion, may be illustrated (and roughly defined) by the examples
(1) of measuring the length of an island’s coastline, and (2)
measuring the area of the island.

To measure the length of the coastline we might select a
measuring stick of length X and determine that n such measuring
sticks could be placed end to end along the coastline. The length
of the coastline is then intuitively n). If we were measuring the
area of the island, we could use a square of area A2 to derive
an area of mA2, where m is the pumber of squares it takes to
cover the island. If we actually did this, we would find that both
of these mecasurcments vary with ), the length of the measuring
instrument -- an undesirable result.

In these two examples the length ) is raised to a particular
power: the power of obe to measure length, the power of two
to measure area. These are two examples of the general rule of
raising A to a power that is the dimenasion of the object being
measured. In the case of the island, raising A to the topological
dimeusion does not yield consistent results. If, however, we
were to use the power 1.2 instead of 1.0 to measure the length,
and 2.1 instead of 2.0 to measure tlic area, we would find that
the measured leugth and area remained constant regardless of
the size of the measuring instrument chosen.’ The positive real
number D that yields such a consistent measurement is the
Jractal dimension. D is always greater than or equal to the
topological dimension.

The most important lesson the work of Mandelbrot and
others teaches us is the following:

Standard notions of length and area do not produce
consistent measurements for many natural shapes: the
basic metric properties of these shapes vary as a func-
tion of the fractal dimension. Fractal dimension, there-
fore, is a neceasary part of any consistent description of
such shapes.

This result, which could almost be stated as a theor' m,
demonstrates the fundamental importance of knowing the ¢ ac-
tal dimension of a surface. It implies that any description o1 a
natural shape that does not incl: '~ the fractal dimension cannot
be relicd upon to be correct 2t wn ' than ope = »fe of examina-
tion.

Fractal Brownian functions. ‘virtually all the fractals
encountered in physical models have two additional properties:
(1) each segment is statistically similar to all others; (2) they are
statistically invariant over wide transformations of scale. Motion
of a particle undergoing Brownian motion is the canonical ex-
ample of this type of fractal. The discussion that follows will be
devoted exclusively to fractal Brownian functions, a generaliza-
tion of Brownian motion.

A random function B(z) is a fractal Brownian function if
for all r and Ar

Bz + Az) - B(z) _
e M 2R <y)=Fw a

where /(y) is a cumulative distribution function [1]. The fractal

*This example is discussed at greater length in Mandclbrot's
book, “Fractals: Form, Chance and Dimension.” The empirical
data are from Richardson 1961.




dimension D) of the graph described by B(z) is

D=2-H (2)

It H{ = 1/2 and F(y)is a zero-mean (Gaussian with unit variance,
then B(r) is the classical Brownian function. This definition
has obvious extensions to two or more topological dimensions.
The fractal dimension of a fractal Brownian function can also
be measured from its Fourier power spectrum, as the spectral
density of a fractal Brownian function is proportional to f~2# -1,
Discussion of the rather technical proof of this fact may be found
in [1]. .
The fractal dimension of a surface corresponds roughly to
our intuitive notion of jaggedoess. Thus, if we were to generate
a series of scenes with the same 3-D relief but increasing fractal
dimeusion ), we would obtain the following sequence: first, a
flat plane ([) = 2), then rolling countryside (D == 2.1), a worn,
old mountain range (D = 2.3), a young, rugged mountain range
(D = 2.5), and finally a stalagmite-covered plane (D = 2.8).

The fractal dimension of a surface is invariant with respect
to transformations of scale, as Az is independent of H and
F(y). The fractal dimension is also invariant with respect to
linear transformations of the data and thus it remains stable
over smooth, monotonic transformations.

2.1 Fractals And The Imaging Process

Before we can use a fractal model of natural surfaces to
help us understand images, however, we must determine how
the imaging process maps a fractal surface shape into an image
intensity surface. The mathematics of this problem is difficult
and no complete solution has as yet been achieved. Nonetheless,
simulation of the imaging process with a variety of fractal surface
models can provide us with an empirical answer -- i.e., that
images of fractal surfaces are themselves fractal as long as the
fractal-generating function is spatially isotropie [19]. It is worth
noting that practical fractal-generation techniques, such as those
used in computer graphics, have had to constrain the fractal
generating function to be isotropic so that realistic imagery could
be obtained [3].

Real images do not, of course, appear fractal over all pos-
sible seales of examination. The overall size of the imaged surface
places an upper limit on the range of scales for which the surface
shape appears to be fractal, and a lower limit is set by the size
of the surface’s constituent particles. In between these limits,
however. we may use Equation (1) to obtain a useful description
of the surface.

Simulation shows that the fractal dimension of the physical
surface dictates the fractal dimension of the image intensity
surface: it appears that the fractal dimension of the image is
a logarithmic function of the fractal dimension of the surface.
If we assne that the surface is homogeneous, thercfore, we
can estimate the fractal dimension of the surface by measuring
the fractal dimension of the image data. Fven if the surface is
not homogencous, we can still infer the fractal dimension of the
surface from imaged surface contours and bounding contours,
by use of Mandelbrot's results.

What we have developed, then, is a method for inferring
a basic property of the 3-D surface (its fractal dimension) from

the imuge data. The fact that the fractal dimension corresponds
closely to our intuitive notion of roughness shows the impor-
tance of the measurement: we can now discover from the image
data whether the 3-D surface is rough or smooth, isotropic or
anisotropic.  We can kuow, in effect, what kind of cloth the
surface was cut from. The fact that the fractal dimension also
describes the basic metric properties of the imaged surface is
further indication that it is a critical element in any consistent
representation of natural surfaces.

2.2 Applicability Of The Fractal Model

An implication of the fractal surface model is that the image
intensity surface is itself fractal  and vice versa. This is be
cause imiage intensity is primarily a function of the angle between
tie surface pormal aud the incident illumination: thus, if the
image intensities satisfy Equation (1), then (for a homogeneous
surface) the angle between surface normal and illuminant must
also and, integrating, we find that the 3-D surface is a spatially
isotropic fractal.

A wethod of evaluating the usefulness of the fractal sur-
face model, therefore, is to determine whether or not images of
natural surfaces are well described by a fractal function. To
evaluate the applicability of the fractal model, we first rewrite
Equation (1) to obtain the following description of the manner
in which the sccond-order statistics of the image change with
scale:

E(ld]a.)lAz]|~" = E(|dL,]) (3)

where k is a constant and E(dls,) is the expected value of
the change in intensity over distance Az. FEquation (3) is a
hypothesized relation among the image intensities: a hypothesis
that we may test statistically, If we find that Equation (3) is
true of the image inteusity surface and the viewed surface is
homogeneous and continuous then we may conclude that the 3-
D surfuce is itself fractal. It is an important characteristic of
the frictal model that we can determine its appropriateness for
particular image data because it means that we can know when,
and when not. to use the model.

To evaluate the suitability of a fractal model for natural
textures, the homogeneous regions from cach of six images of
nstural scenes were densely sampled. In addition, twelve tex-
tures taken from Drodatz (8] were digitized and examined (see
Figure 3). The intensity values within cach of these regions were
then approximated by a fractal Brownian function and the ap-
proximation crror observed.

For the majority of the textures examined (77¢), the model
described the image data accurately (sce [19] for more detail).
In 159 of the cases the region was constant except for random,
tero-mean perturbations; consequently, the fractal function cor-
rectly approximates the image data, although the fractal dimen-
sion was cqual to the topological dimension and thus the data's
dimension is (echnically not “fractional.” The fit was poor in
only &8¢ of the regions examined and. in many of these cases, it
appeared that the image digitization had become saturated.

The fact that the vast majority of the regions examined were
quite well approximated by a fractal Brownian function indicates
that the fractal surface model will provide a useful description of
natural surfaces and their images. Fractal Brownian functions




do not, of course, account for such large-scale spatial structure
as those seen in the image of a brick wall or a tiled floor. Such
structures must be accounted for by other means.

3. INFERRING SURFACE PROPERTIES

Fractal functions appear to provide a good description of
natural surface textures and their images; thus, it is natural
to use the fractal model for texture segmentation, classification
and shape-from-texture. The first four headings of this section
describe the research that has been performed in this area, and
indicate likely directions for further research.

Fractal functions with H = 0 can be used to model smooth
surfaces and their reflectance properties. For the first time,
therefore, we can offer a single model encompassing both image
shading and texture, with shading as a limiting case in the
spectrum of texture granularity. The fractal model thus allows
us to make a reasonable and rigorous definition of the categories
"texture” and “shading,” thus enabling us to discover similarities
and differences between them. The final heading of this section
briefly discusses this result.

3.1 An Example Of Texture Segmentation

Figure 2(a) shows an aerial view of San Francisco Bay. This
image was digitized and the fractal dimension computed for
each 8 X 8 block of pixels. Figure 2(b) shows a histogram of
the fractal dimcnsions computed over the whole image. This
histogram of fractal dimension was then broken at the “valleys™
between the modes of the histogram, and the image segmented
into pixel neighborhoods belonging to one mode or another.’
Figure 2(c) shows the segmentation obtained by thresholding
at the breakpoint indicated by the arrow under (b): each pixel
in (c) corresponds to an 8 X 8 block of pixels in the original
image. As can be seen, a good segmentation into water and land
was achieved - one that cannot be obtained by thresholding on
image intensity.

This image was then averaged down, from 512 X 512 pixels
into 256 X 256 and 128 X 128 pixel images, and the fractal
dimension recomputed for each of the reduced images. Figures
1 (d) and (e) illustrate the segmentations produced by using
the same breakpoint as had been employed in the original full-
resolution segmentation. These results demonstrate the stability
of the fractal dimension measure across wide (4 : 1) variations
in scale.

Several other images have been scgmented in this manner
{t9]. tn cach case a good segmentation was achieved. The
computed fractal dimension, and thus the segmentation, was
found to be stable over at least 4 : 1 variations in scale; most were
stable over a range of 8 : 1. Stability of the fractal description
ia to be expected, because the fractal dimension of the image is
directly related to the fractal dimension of the viewed surface,

*No attempt wis made to incorporate orientational information

into measurement of the Jocal fractal dimension, i.e., differences
in dimension among various image directions at a point were
collapsed into one average measurcment.

Figure 2. San Francisco Bay, and its texture segmentations.

which is a property of natural surfaces that has been shown
be invariant with respect to transformations of scale {2}.

to

The fact that the fractal description of texture is stable
with respect to scale is a critically important property. After all,
consider: how can we hope to compute a stable, viewer-
independent reprcsentation of the world if our informa-
tion about the world is not stable with respect to scale?
This example of texture property measurement reiterates what
we observed carlier, i.e., the fact that the fractal dimension of
the surfuace is necessary to any consistent description of a natural
surface.

3.2 A Comparison With Other Segmentation Techniques

To obtain an objective comparison with previously estab-
lished texture srgmentation techniques. a mosaic of eight natural
textures taken from Brodatz (8] was redigitized. The digitized
texture mosaic, shown in Figure 3, was constructed by Laws
{9.10] for the purpose of comparing various texture segmentation
procedures. The textures that comprise this data set were chosen
to be as visually similar as possible; gross statistical differences
were removed by mean-value- and histogram-equalization.

Segmentation performance for these data exists for several
techniques and, although differences in digitization complicate
any comparisons we might wish to make, Laws’s performance
figures nevertheless serve as a useful yardstick for assessing per-
formance on this data.

For this comparison simple orientational information was
incorporated into the fractal description: the fractal dimension
was calculated separately for the 2 and y coordinates. The two-
parameter fractal scgmenter yielded a theoretical classification
accuracy of 84.46¢. This compares quite favorably with correla-
tion techniques [11,12] reported by Laws as attaining 657 ac-



Figure 3. The Brodatz textures used for comparison.

curacy, as well as with co-occurrence techniques [13,14] reported
to be 729 accurate. This superior performance was achieved
despite the large number of texture features employed by the
other methods.

The simple two-parameter fractal segmenter even compares
well with Laws's own texture energy statistics; even though his
segmentation procedure included more than a dozen texture
statistics that were optimized for the test data, its theoretical
segmentation accuracy was only 3o better. Thus, the results of
this comparison indicate that fractal-based texture segmentation
will likely prove to be a general and powerful technique (for more
details, sce [19]).

3.3 Relationship To Texture Models

The fact that the fractal dimension of the image data can be
measured by using either co-occurrence statistics in conjunction
with Equation (1}, or by means of the Fourier power spectrum,
suggests one interesting aspect of the fractal model: it highlights
a formal link between co-occurrence texture measures [13,14]
and Fourier techniques [15,16,17). The mathematical results
Mandelbrot derives for fractal Brownian functions show that the
way iuterpixel differences change with distance determines the
rate at which the Fourier power spectrum falls off as frequency
is increased, and vice versa.

Thus, it appears that the fractal model offers potential for
unifying and simplifying the co-occurrence and Fourier texture
descriptions. If we believe that natural surface textures and
their images are fractal (as seems to be indicated by the pre-
vious resuits), then the fractal dimension is the most relevant
parameter in differentiating among textures. In this case we
would expect both the Fourier and co-occurrence techniques to
provide reasonable texture segmentations, as both yicld sufficient
information to dctermine the fractal dimension. The advantage
of the fractal model would be that it captures a simple physical
relationship underlying the texture structure — a relationship
lost with either of the other two characterizations of texture.
Kpowledge of the fundamental physical principle can result in
both increased computational efficiency and further insight.

3.4 Shape From Texture

There are two ways surface shape is reflected in image tex-
ture: (1) projection foreshortening, a function of the angle be-
tween the viewer and the surface normal, and (2) the perspec-

tive texture gradicnt that is due to increasing distance between
the viewer and the surface. These two phenomena are indepen-
dent in that they have separate causes. Thus, they can serve to
confirm each other  i.e, if projection foreshortening is used to
estimate surface tilt, that estimate is independently con firmed
if there is a texture gradient of the proper magnitude and same
direction [17.18]. We may be confident our estimate is correct
when such independent confirmation is found.

The fractal dimension found in the image appears to be
nearly independent of the orientation of the surface (by virtue
of independence with respect to scale): therefore fractal dimen-
sion cannot be used to measure surface orientation. Projection
foreshortening does. however, affect the variance of the distribu-
tion F(y) associated with the fractal dimension (see Equation
(1)). Foreshortening affects Var(F(y)) in exactly the manaer it
affects the distribution of tangent direction.

Thus, to estimate surface orientation, we might assume that
the surface texture is isotropic and estimate surface orienta-
tion on the basis of previously derived results [18]. While this
often works [19]. the necessity of assuming isotropy is a serious
shortcoming of this technique. An important new result, there-
fore. is that we may in part cure this problem by observing the
fractal dimensions in the z and y directions. If they are unequal
we bave prima facie evidence of anisotropy in the surface tex-
ture, because fractal dimension is unaffected by projection.

However a foreshortening-derived estimate of surface orien-
tation is produced, we may still seek confirmation of it by
measuring the perspective texture gradient: if confirmation is
found, we may be confident of our estimate. Such a gradient
appears in Figure 2: the houses dwindle in size with increasing
distance from the viewer. lgitial results, detailed in {19]. indi-
cate that perspective texture gradients can be inferred from the
locally computed fractal dimension.

This two new results, i.e., the ability to ebtain evidence of
surface texture anisotropy and the measurement of the perspec-
tive texture gradient, are extremely important because they
offer a way to make shape-from-unfamiliar-texture techniques
sufliciently reliable so as to be useful. Development of these
techniques, therefore. constitute an important task for future
rescarch.

3.5 Shading And Texture

Fractal functions with H = 0 can be used to model smooth
surfaces and their reflectance properties accurately. When H ~
0. the surface is locally planar, except for small, random varia-
tions described by the function F(y) in Equation (1). If we as-
sume that incident light is reflected at the angle of incidence and
we make the variance of F(y) small relative to the pixel size, the
surface will be mirrorlike. If, on the other hand. the variance of
Fiy) is large relative to the pixel size, the surface will become
more Lambertian.

The fractal model, therefore, is a single model that can ac-
count for hoth image shading and texture. with shading cor-
responding to the limiting value of /7. The fractal model thus
allows us to make a reasonable and rigorous definition of the cat-
egories “texture” and “shading.” in terms that can be measured
by using the image data. One important goal of future research
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will be to discover similarities or differences between these two
categories; initial results indicate that local shape-from-shading
results [26] can be generalized to include shape-from-texture.

COMPUTING A DESCRIPTION

Current methods for representing the three-dimensional
world suffer from a certain awkwardness and inflexibility that
makes them difficult to envisage as the basis for human-
performance-level capabilities. They bave encountered prob-
lems in dealing with partial knowledge or uncertain information,
and they become implausibly complex when confronted with the
problem of representing a crumpled newspaper, a clump of leaves
or a pufly cloud. Furthermore, they seem ill-suited to solving the
problem of representing a class of objects, or determining that
a particular object is a member of that class.

What is wrong with conventional shape representations?
One major problem is that they make too much information
explicit. Experiments in buman perception (21] lead onme to
believe that our representation of a crumpled newspaper (for
instance) is not accurate enough to recover every z value; rather,
it seems that we remember the general “crumpledness” and a few
of the major features, such as the general outline. The rest of
the newspaper's detailed structure is ignored; it is unimportant,
random.

From the point of view of constructing a representation, the
only important constraints on shape are the crumpledness and
general outline. \What we would like to do is somehow capture
the notion of constrained chance, that is, the intuition that “a
crumpled newspaper has z, y and z structural regularities and
the rest is just variable detail,” thus allowing us to avoid dealing
with inconsequential (random) variations and to reason instead
only about the structural regularities.

4.

4.1 The Process Of Computing A Description

How shall we go about computing such a “con:  ned
chance™ description’® Let us consider the problem formaiiy and
sec where that leads us. The process of computing a shape
description (given some sensory data) seems best characterized
as attempting to confirm or deny such hypotheses as “shape z
is consistent with these sense data.” Computation of a shape
deseription, therefore, seems to be a problem in induction [20].

{6, naively. we try to use an inductive method, we start
with the set of all possible shape hypotheses; we then attempt
to winnow the set down to a small number of hypotheses
that are confirmed by the sensory data. The “set of all
shape hypotheses,” however, is much too large to work with.
Consequently, we mast take a slightly different tack.

Using the notion of constrained chance. Rather than
attempting to ennmerate “all shape hypotheses™ explicitly, let us

*The term “representation” will be used to refer to the scheme

for representing shapes, while the term “description” will be
reserved for specific instances. Thus, one can compute a descrip-
tion of some object; it will be a member of the class of shapes
that can be accounted for within the representation.

instead construct a shape generator that uses a random number
gencrator to produce a surface shape description (I shall shortly
describe how to do this). If we were to run this shape generator
for an infinite period, it would eventually produce instances of
every shape within a large class of shapes. If the generator were
so constructed that the class of shapes produced was exactly the
set of “all hypotheses” about shape, then the program for the
shape generator, together with a the program for the random
number generator, would comprise a description of the set of all
shape hypotheses.

The shape generator illustrates how the notion of con-
strained chance may be used to obtain a compact description
of an infinite set of shapes. By changing the constraints that
determine how the output of the random number generator
is translated into shape, we can change the set of shapes
described; specifically, we can introduce constraints that rule
out some classes of shape and thus restrict the set of shapes that
are described. The ability to progressively restrict the set of
shapes described allows us to use the constrained-chance shape
gencrator as the basis for induction, rather than being forced to
use the explicitly enumerated set of all shape hypotheses.

The process of computing a “constrained chance descrip-
We use image data to infer {using
knowledge of the physics of image formation) constraints on
and then introduce those constraints into the shape
The end result will be a programlike descriptinn that
is capable of producing all the shapes that are consistent with
the image data; i.e., we shall have a description of the shapes
confirmed by the image data. This, then. is the type of descrip-
tion we wanted: a description of shape that contains the impor-
tam structurad regularinies that can be inferred from the image
(e.g.. crumpledness, outline), but one that leaves everything else

tion™ is straightforward.

the shape,
generator,

as variable, random.

Some people are already doing this. Something very
much like thix constrained-chance representation is already being
widely utilized in the computer graphics community. Natural-
looking shapes are produced by a simple fractal program that
recursively suhdivides the region to be filled, introducing ran-
dom jnggedness of appropriate magpitude at each step [3.5].
The jaggedness is determined by specifying the fractal dimen-
sion. The shapes that ean be produced in this manner range
from plunar surfaces to mountainlike shapes, depending on the
fractal dimension. Current graphics technology often employs
fractal shape generators in a more constrained mode; often the
overall, general shape or the boundary conditions are specified
beforchand. ‘Thus, a scene is often constructed by first specify-
ing initial constraints on the general shape, and then using a
fractal shape generator to fill in the surface with appropriately
jagged (or smooth) details. The description employed in such
graphics systems, therefore, is exactly a constrained-chance
description: important details are specificd, and everything else
is left unspecified except in a qualitative manner.

‘This type of description bears a close relationship to surface
interpolation methods (c.g., {24]). Typically, such schemes fit a
smooth surface that satisfies whatever boundary conditions are
available. The initial boundary conditions, together with the
interpolation function, constitute a precise deseription of




the surface shape. Such schemes are limited to smooth sur-
faces, however, and therefore are incapable of dealing with most
natural shapes. In contrast, a fractal-based representation allows
either rough or smooth surfaces to be fit to the initial boundary
conditions, depending upon the fractal dimension. This method
of description, therefore, is quite capable of describing most
natural surfaces — and that is why the graphics community is
turping to the use of fractal-based descriptions for natural sur-
faces.

In order to make use of this type of description it is neces-
sary to be able to specify the surface shape in a gqualitative
manner, i.e., how rugged is the topography? This specification
of qualitative shape can be accomplished by fixing the fractal
dimension. The fact that we bave recently developed a method
of inferring the fractal dimension of the 3-D surface directly from
the image data mcans that we are now able, for the first time,
to actually compute a fractal or constrained-chance description
of a rcal scene from its image.

Not only terrestrial topography has been modeled by use
of a constrained-chance representation, but also clouds, ponds,
riverbeds, snowflakes, ocean surf and stars, just to name a few
examples [1,3,4,5,8,7). Researchers have also used constrained-
chance gencrators to produce plant shapes [1,48]. A very
natural-looking trce can be produced by recursively applying
a random number generator and simple constraints on branch-
ing geometry. In each case a random number generator plus a
surprisingly small number of constraints can be used to produce
very good models of apparently complex natural phenomena.
Thus, there is hope for extending this approach well beyond the
domain of land topography.

4.2 An Example Of Computing A Description

Figure 4 illustrates an actual example of computing such
a description. Figure 4(a) is an image of a real mountain. Let
us suppose that we wished to use the image data to construct
4 three-dimensional model of the rightmost peak (arrow), per-
haps for the purpose of predicting whether or not we could climb
it. I will take the standard fractal techrology used in the com-
puter graphics community as the unconstrained “primal” shape
generator, as it provides an apparently accurate model of a wide
range of natural surfaces,

All that is necessary to coastruct a description of this moun-
tain peak is to extract shape constraints from the image and
insert them into the primal shape generator. The fractal dimen-
sion of the 3-D surface is the principal parameter (constraint)
required by our fractal shape generator; roughly speaking, it
determines the ruggedness of the surface. The fractal dimen-
sion of the 3-D surface in the region near the rightmost peak
was inferred from the fractal dimension of the image intensity
surface in that area [19]. Constraint on the general outline
of this pecak was derived from distinguished points (those with
high curvature) along the boundary between sky and mountain.
These two constraints, together with the shape generator, are
a 3-D representation of this peak; the question is: how good
a representation’ A view of a 3-D model derived from this
representation is shown in Figure 4(b). It appears that these
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Figure 4. An example of computing a constrained-chance descrip-
tion.

simple constraints are sufficient for computing a good® 3-D rep-
resentation of the peak.

4.3 What Do We Accomplish With This Approach?

Let’s consider the problems cited above:

(1) The problem of representing a complex shape, such as
a crumpled pewspaper. The problem with a shape-primitive
representation such as surface normals, voxcels or generalized
cvlinders is that the resulting description seems hopelessly com-
plex. Because the constrained-chance represcntation allows us
to deal only with the structural regularities and to ignore in-
consequential details, the problem can become much simpler.
Thus, for instance, the graphics community has found that
constrained-chance fractal deseriptions of complex objects (e.g..
a mountain) are quite compact and easy to manipulate. It also
turns out that many previously simple things, such as describing
a smooth plane. remain simple.

How does this representation function when we want to com-
pute a description of a speci fic mountain, bush or other entity
from its image? Current “shape-from-z research furnishes con-
straints on shape in a variety of forms: surface orientation (from
texture [15  18.25], shading [22.23.26]). relative depth (from
motion [27.28], contour [29 - 31}), and absolute depth {from
stereo [32 34], cgomotion [35,36]). It appears to be fairly
straightforward to mix cach of the various flavors of constraint
into the vanilla-flavor shape generator [3.5]. although significant
research remains to be done. As more shape constraints are ob-
tained from the image, the description becomes more and more
precise; i.c.. there is less and less chance in the description.

*Rather primitive ray tracing, etc., was used to generate this
image; better code is being implemented.




Eventually, only one shape satisfies all of the constraints.

How complex could such a description become! The
constrained-chance representation would at worst be as complex
as a two-dimensional array of z values representing the same
surface, because we could always use it to actually generate such
an array of z values. As mentioned previously, experiments in
human perception indicate that our representations are usually
not accurate enough to recover every = value. The representation
of a particular object, therefore, is likely to be quite a bit simpler
than a full depth map.

(2) The problem of representing classes of shapes, such
as are referred to by the terms “a mountain,” or “a bush.”
Again, the ability to specify important structural details and
leave the rest only qualitatively constrained allows simplification
of the problem. The definition of “a mountain,” for instance,
might reasonably consist entirely of a specification of the fractal
dimension of the surface and a caveat concerning size. If we
are to judge by the results reported in the computer graphics
literature, the notion of representation by constrained chance
thus allows us, using only a few lines of code, to produce an
accurate description of the class of shapes we label “mountains,”
or “bush.”

{3) The problem of determining the set of appropriate
descriptions when the shape is underconstrained by the sense
The problem with standard shape-primitive repre-
sentations is that either we must generate all combinations of
shape primitives consistent with the sense data (a very hard
problem), or pick a prototype and specify error bounds. The
problem with using prototypes plus error bounds is that we are
forced to overcommit ourselves by choosing the prototype; e.g.,
there is something seriously wrong about describing a cube as
“a sphere £0.4r", even though the cube certainly fits within the
specified volume.
the constrained-chance representation allows
details to be left constrained but unspecified, it allows us to deal
with insufficient sense data by simply adding in those constraints
that can be deduced from the image data and committing our-
selves no further. The result is a programlike description that
can be analyzed and manipulated, does not overcommit itself as
to object shape, and allows examples of shapes consistent with
the image data to be generated and examined.

(1) The problem of determining that a specific descrip-
tion i« 3 member of a more general class. Here the problem
with shape-primitive representations is that there is so much
variability among the descriptions of the members of a class such
as “monntain” that a description of the class as a whole seems
extremely difficult, and determination of class membership even

data.

Because

more S0.

The problem of cstablishing class membership by us-
ing constrained-chiance representations reduces to determining
whether the constraints used to specify a particular description
are a subset of those of the more general class. A determination
regarding elass membership is, thercfore, exactly equivalent to
determining whether one program's output is a subset of another
program’'s ontput.  While such automatic proof is a difficult
problem, it is at least tractable and well-defined — unlike the
equivalent problem can be when using a shape-primitive rep-
resentation. Thus, a constrained-chance representation allows
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a clear and potentially useful definition of what it means to
“recognize that ris an y."

Further, because we need only deal with the structural
regularities, this problem can become much simpler than it might
at first appear. Taking the class “a mountain” to be defined by
fractal dimension and overall size (a definition that is actually
sufficient to produce realistic mountain shapes) we can, for in-
stance, casily determine that the description computed by us for
the mountain peak is in fact a description of part of a mountain
- - a task that previously seemed to be nearly impossible.

5. SUMMARY

Fractal functions seem to provide a good model of natural
surface shapes. Many basic physical processes produce fractal
surfaces. Fractal surfaces also look like natural surfaces, and
so have come into widespread uses in the computer graphics
community. Furthermore, we have conducted a survey of natural
imagery and found that a fractal model of imaged 3-D surfaces
furnishes an accurate description of both textured and shaded
image regions.

Fractal functions, therefore, are useful for addressing the
related problems of representing complex natural shapes such as
mountains, and computing a description of such shapes from
image data.  The following describes the progress achieved
toward the solution of these problems.

Computing a description. Characterization of image
texture by means of a fractal surface model has shed considerable
light on the physical basis for several of the texture techniques
currently in wse, and made it possible to describe image texture
in a manner that is stable over transformations of scale and
linear transforms of inteusity. These properties of the fractal
surface model allow it to serve as the basis for an accurate image
segmentation procedure that is stable over a wide range of scales.

Because fractal dimension is not affected by projection dis-
tortion. its measurcment can significantly enhance our ability
to estimate shape from (unfamiliar) texture. Specifically, it
scems that measurement of fractal dimension can provide (1)
evidence of surface texture anisotropy. and (2) an estimate of
the perspective texture gradient. Both capabilities are extremely
important becanse they provide a way to obtain independent
confirmation of the assumptions on which previously-reported
[18] shape-from-unfamiliar-texture techniques are based.

Representi- ¢ natural shapes. A constrained-chance
representation modeled after the fractal techniques used by
the graphics comw ity seems uscful for representing complex
patural shapes, such as a erumpled newspaper or a moun-
tain, The problem encountered when using conventional shape-
primitive representations to describe natural surfaces is that the
resulting deseription is often hopelessly complex. Because the
constrained-chance representation allows us to deal only with
the structural regularitics and to ignore inconsequential details,
the problem can become much simpler. Thus, for instance, the
graphics community has found that constrained-chance fractal
descriptions of complex objeets (e.g.. a mountain) are quite com-
piact and casy to maanipulate. Similarly, the problem of repre-




senting classes of shapes, such as are referred to by the terms
“a mountain,” or “a bush,” can also be significantly simplified.

The encouraging progress that has already been achieved on
both of these problems augers well for this approach. It appears
that a constrained-chance representation incorporating a fractal
model of surface shape will provile an elegant solution for some
of the most difficult problems encountered when attempting to
progress from the image of a natural scene to its description.
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ABSTRACT

In this paper we offer a critical evaluation
of the partitioning (perceptual organization)
problem, noting the extent to which it has
distinct formulations and parameterizations. We
show that most partitioning techniques can be
characterized as variations of four distinct
paradigms, and argue that any effective technique
must satisfy two general principles. We give
concrete substance to our general discussion by
introducing new partitioning techniques for planar
geometric curves, and present experimental results
demonstrating their effectiveness.

I INTRODUCTION

A basic attribute of the human visual system
is 1its ability to group elements of a perceived
scene or visual field into meaningful or coherent
clusters; in addition to clustering or
partitioning, the visual system generally imparts
structure and often a semantic interpretation to
the data. In spite of the apparent existence
proof provided by human vision, the general
problem of scene partitioning remains unsolved for
computer vision. Furthermore, there is even some
question as to whether this problem is meaningful
(or a solution verifiable) in its most general
form.

Part of the difficulty resides 1in the fact
that 1t fs not clear to what extent semantic
knowledge (e.g., recognizing the appearance of a
straight 1line or some letter of the English
alphabet), as opposed to generic criteria (e.g.,
grouping scene elements on the basis of geometric
proximity), 1is employed in examples of human
performance. It would not be unreasonable to
assume that a typical human has on the order of
tens of thousands of 1iconic primitives in his
visual vocabulary; a normal adult”s 1linguistic
vocabulary might consist of from 10,000 to 40,000
root words, and iconic memory is believed to be at
least as effective as its linguistic counterpart.
Since, at present, we cannot hope to duplicate
human competence in semantic {interpretation, it
would be desirable to find a task domain in which
the influence of semantic knowledge 1s limited.

.
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In such a domain 1t might be possible to discover
the generic criteria employed by the human visual
system and to duplicate human performance. One of
the main goals of the research effort described in
this paper 1is to find a set of generic rules and
models that will permit a machine to duplicate
human performance in partitioning planar curves.

II  THE PARTITIONING PROBLEM: TSSUES
AND CONSIDERATIONS

Even if we are given a problem domain in which
explicit semantic cues are missing, to what extent
is partitioning dependent on the purpose,
vocabulary, data representation, and past
experience of the “partitioning instrument,” as
opposed to being a search for context independent
"intrinsic structure” in the data? We argue that
rather than having a unique formulation, the
partitioning problem wmust be paramaterized along a
number of basic dimensions. In the remainder of
this section we enumerate some of these dimensions
and discuss their relevauce.

A. Intent (Purpose) of the Partitioning Task

In the experiment described in Figure 1, human
subjects were presented with the task of
partitioning a set of two-dimensional curves with
respect to three different objectives: (1) choose a
set of contour points that best mark those
locations at which curve segments produced by
different processes were “glued” together;
(2) choose a set of contour points that best allow
one to reconstruct the complete curve; (3) choose a
set of contour points that would best allow one to
distinguish the given curve from others. Each
person was given only one of the three task
statements. Even though the point selections
within a task varied from subject to subject, there
was significant overlap and the variations were
easily explained in terms of recognized strategies
invoked to satisfy the given constraints; however,
the points selected {in the three tasks were
significantly different. Thus, even in the case of
data with almost no semantic content, the
partitioning problem 1s NOT a generic task
independent of purpose.




B. Partitioning Viewed as an Explanation of Curve
Construction

With respect to  “process partitioning”
(partitioning the curve into segments produced by
different processes), a partition can be viewed as
an explanation of how the curve was constructed.
Explanations have the following attributes which,
when assigned different "values,” lead to different
explanations and thus different partitions:

* Vocabulary (primitives and relations) --
what properties of our data should be
represented, and how should these
properties be computed? That 1is, we must
select those aspects of the problem domain
we consider relevant to our partition
decisions (e.g., geometric shape, gray
scale, line width, semantic content), and
enable their computation by providing
models for the corresponding structures
(e.g., straight-line segment, circular arc,
wiggly segment). We must also allow for
the appropriate "viewing” conditions; e.g.,
symmetry, repeated structure, parallel
lines, are global concepts that imply that
the curve has finite extent and can be
viewed as a "whole,” as opposed to only
permitting computations that are based on
some limited interval or neighborhood of
(or along) the curve.

* Definition of Noise —— in a generic sense,
any data set that does not have a "simple
(concise)” description 1is noise. Thus,
noise 1is relative to both the selected
descriptive language and an arbitrary level
of complexity. The particular choices for
vocabulary and the acceptable complexity
level determine whether a point is selected
as a partition point or considered to be a
noise element.

* Beltevability -- depending on the
competence (completeness) of our vocabulary
to describe any curve that may be
encountered, the selected metric for
judging similarity, and the arbitrary
threshold we have chosen for believing that
a vocabulary term corresponds to some
segment of a given curve, partition points
will appear, disappear, or shift.

C. Representation

The form in which the data {s presented (i.e.,
the {input representation), as well as the type of
data, are critical aspects of the problem
definition, and will have a major impact on the
decisions made by different approaches to the
partitioning task. Some of the key variables are:

* Analog (pictorial) vs digital (quantized)
vs analytic description of the curves

* Single vs multiple “views” (e.g., single
vs. multiple quantizations of a given
segment)

% Input resolution vs. length of smallest
segment of interest

* Simply-connected (continuous) curves vs
self-intersecting curves or curver with

“gaps”

* For complex situations, 1s connectivity
provided, or must it be established

* If a curve possesses attributes (e.g., gray
scale, width) other than “shape” that are
to serve as partitioning criteria, how are
they obtained -- by measurement on an
actual “image,” or as symbolic tags
provided as part of the given data set?

D. Evaluation

How do we determine if a given technique or
approach to the partitioning problem is successful?
How can we compare different techniques? We have
already observed that, to the extent that
partitioning is a "well-defined” problem at all, it
has a large number of alternative formulations and
parameterizations. Thus, a technique that |is
dominant under one set of conditions may be
inferior under a different parameterization. Never
the less, any evaluation procedure must be based on
the following considerations:

* Is there a known "correct” answer (e.g.,
because of the way the curves were
constructed)?

* Is the problem formulated in such a way
that there 1s a “provably” correct answer?

* How good 1s the agreement of the
partitioned data with the descriptive
vocabulary (models) in which the
“"explanation” is posed?

* How good is the agreement with (generic or
"expert”) subjective human judgment?

* What is the trade-off between “false-
alarms” and “"misses” in the placement of
partition points. To the extent that it {is
not possible to ensure a perfect answer (in
the placement of the partition points),
there 18 no way to avoid such a trade-off.
Even 1f the the relative weighting between
these two types of errors 1is not made
explicit, 1t 1is inherent 1in any decision
procedure -- including the use of
subjective human judgment.

In spite of all of the previous discussion in
this section, 1t might still be argued that if we
take the union of all partition points obtained for
all reasonable definitions and parameterizations of
the partition problem, we would still end up with a
"small” set of partition points for any given
curve, and further, there wmay be a generic
procedure for obtaining this covering set. While a
full discussion of this possibility {s is not
teasible here, we can construct a counterexample to
the unqualified conjecture based on selecting a
very high ratio of the cost of a miss to a false~
alarm in selecting the partition points. A (weak)
refutation can also be based on the observation
that if a generic covering set of partition points
exists, then there should be a relatively
consistent way of ordering all the points on a
given curve as to their being acceptable partition
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points; the experiment presented in Figure 1
indicates that, in general, such a consistent
ordering does not exist.

111 PARADIGMS FOR CURVE PARTITIONING

Almost all algorithms employed for curve
partitioning appear to be special cases
(instantiations) of one or more of the following
paradigms:

* TLocal Detection of Distinguished Points: a
partition point 1is inserted at locations
along the curve at which one or more of the
descriptive attributes (e.g., curvature,
distance from a coordinate axis or
centroid) is determined to have a
discontinuity, an extreme value (maxima or
minima), or a zero value separating
intervals of positive and negative values.

* Best Global Description: a set of partition
points is inserted at those locations along
a curve that allow the "best” description
of the assoclated segments in terms of some
a priori set of models (e.g., the set of
models might consist of all first and
second degree polynomials, with only one
model permitted to explain the data between
two adjacent partition points; the quality
of the description might be measured by the
mean square deviation of the data points
from the fitting polynomials).

* Confirming Evidence: given a number of
"independent” procedures (or possibly
different parameterizations of a given
procedure) for locating potential partition
points, we retain only those partition
points that are common to some subset of
the different procedures or their
parameterizations.

* Recursive Sfmplification: the input data is
subjected to repeated applications of some
transformation that monotonically reduces
some measurable aspect of the data to one
of a finite number of terminal s.ates
(e.g., differentiation, smoothing,
projection, thresholding). The hierarchy
of data sets thus produced is then
processed with an algorithm derived from
the previous three paradigms.

IV PRINCIPLES OF EFFECTIVE (ROBUST)
MODEL-BASED INTERPRETATION

What underlies our choice of partitioning
criteria? We  assert that any competent
partitioning technique, regardless of which of the
above paradigms 1{s employed, will incorporate the
following principles.

A, Stability

The “"principle of stability,” is the assertion
that any valid perceptual decision should be stable
under at least small perturbations of both the
imaging conditions and the decision algorithm
parameters. This generalization of the assumption
of "general position™ also subsumes the assertion
(often presented as an assumption) that most of a
scene must be describable in terms of continuous
variables if meaningful interpretation ig to be
possible.

It is interesting to observe that many of the
constructs in mathematics (e.g., the derivative)
are based on the concepts of convergence and limit,
also subsumed under the stability principle.
Attempts to measure the digital counterparts of the
mathematical concepts have traditionally employed
window type ‘“operators” that are not based on a
limiting process; 1t should come as no surprise
that such attempts have not been very effective.

In practice, 1f we perturb the various imaging
and decision parameters, we observe relatively
gtable decision regions separated by obviously
unstable intervals (e.g., the two distinct percepts
produced by a Necker cube). The stable regions
represent alternative hypotheses that generally
cannot be resolved without recourse to either
additional and more restrictive assumptions, or
gsemantic (domain-specifiec) knowledge.

B. Complete, Concise, and Complexity Limited
Explanation

The decision-making process in image
interpretation, 1i.e. matching image derived data
to a priori models, not only must be stable, but
must also explain all the structure observable in
the data. Equally important, the explanation must
gatisfy specific criteria for believability and
complexity. Believability is largely a matter of
offering the simplest possible description of the
data and, in addition, explaining any deviation of
the data from the models (vocabulary) used in the
description. Even the simplest description,
however, must also be of limited complexity;
otherwise or it will not be understandable and thus
not believable.

By making the foregoing principles explicit,
we can directly invoke them (as demonstrated in the
following section) to formulate effective
algorithms for perceptual organization.

v INSTANTIATION OF THE THEORY: SPECIFIC
TECHNIQUES FOR CURVE PARTITIONING

In this section we offer two effective new
algorithms for curve partitioning (program listings
available from the authors). In each case, we
first describe the the algorithm, and 1later
indicate how it was motivated and constrained by
the principles just presented. 1In both algorithms,
the key 1{deas are: (1) to view each point, or
segme of a curve, from as many perspectives as
possivie, retaining only those partition points
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receiving the highest level of multiple
confirmation; and (2) inhibiting the further
selection of partition points when the density of
points already selected exceeds a preselected or
computed limit.

A Curve Partitioning Based on Detecting Local

Discontinuity

In this sub-section we present a new approach
to the problem of finding points of discontinulty
("critical points”) on a curve. Our criterion for
success is whether we can match the performance of
human subjects given the same task (e.g., see
Figure 1). The importance of this problem from the
standpoint of the psychology of human vision dates
back to the work of Attneave [1954]. However, it
has long been recognized as a very difficult
problem, and no satisfactory computer algorithm
currently exists for this purpose. An excellent
discussion of the problem may be found in in Davis
[1977]; other pertinent references include
Rosenfeld {1975], Freeman [1977], Kruse [1978], and
Pavlidis [1980]). Results and observations akin and
complementary to those presented here can be found
in Hoffman [1982] and in Witkin [1983].

Most approaches equate the search for critical
points with looking for points of high curvature.
Although this intuition seems to be correct, it is
incomplete as stated (i.e., it does not explicitly
take into account "explanation” complexity);
further, the methods proposed for measuring
curvature are often inadequate 1in thelir selection
of stablility criteria. In Figure 2 we show some
results of measuring curvature using discrete
approximations to the mathematical definition.

We have developed an algorithm for locating
critical points that 1invokes a mwodel related to,
but distinct from, the mathematical concept of
curvature. The algorithm 1labels each point on a
curve as belonging to one of three categories:
(a) a point in a smooth interval, (b) a critical
point, or (¢) a point In a noisy interval. To make
this choice, the algorithm analyzes the deviations
of the curve from a chord or “stick” that 1is
iteratively advanced along the curve (this will be
done for a variety of lengths, which is analogous
to analyzing the curve at different resolutions).
If the curve stays close to the chord, points in
the 1interval spanned by the chord will be labeled
as belonging to a smooth section. If the curve
makes a single excursion away from the chord, the
point in the interval that is farthest from the
chord will be labeled a criti{cal point (actually,
for each placement of the chord, an accumulator
associated with the farthest point will be
incremented by the distance between the point and
the chord). If the curve makes two or more
excursions, points in the interval will be labeled
as noise points.

We should note here that "noisy” intervals at
low resolution (large chord length) will have many
critical polnts at higher resolution (small chord
length). Figure 3 shows examples of curve segments
and their classifications. The distance from a
chord that defines a signifficant excursion (i.e.,
the width of the boxes in Figure 3) is a function

of the expected noise along the curve and the
length of the chord.

At each resolution (i.e., stick size), the
algorithm orders the critfcal points according to
the values in their accumulators and selects the
best ones first. To avold setting an arbitrary
“goodness"” threshold or distinguishing critical
from ordinary points, we use a complexity
criterion. To halt the selection process, we stop
when the points being suggested are too close to
those selected previously at the given resolution.
In our experiments we define “too close” as being
within a quarter of the stick length used to
suggest the point.

After the critical points have been selected
at the . coarsest resolution, the algorithm {s
applied at higher resolutions to locate additional
critical points that are outside the regions
dominated by previously selected points. Figure 4a
shows the critical points determined at the coaresst
level (stick length of 100 pixels; approximately
1/10 of the length of the curve). Figure 4b shows
all the critical points labeled with the stick
lengths used to determine them. (We note that this
crit{cal point detection procedure does nct locate
inflection points or smooth transitions between
segments, such as the transition from an arc of a
circle to a line tangent to the circle.)

The above algorithm appears to be very
effective, especially for finding obvious partition
points and 1in not making "ugly” wmistakes (i.e.,
choosing partition points at locations that none of
our human subjects would pick). Its ability to
find good partition points is based on evaluating
each point on the curve from multiple viewpoints
(placements of the stick) -— a direct application
of the principle of stability. Requiring that the
partition points remain stable under changes Iin
resolution (i.e., small changes 1in stick length)
did not appear to be effective and was not
employed; 1in fact, stick length was altered by a
significant amount in each iteration, and partition
points found at these different scales  of
resolution were not expected to support each other,
but were assumed to be due to distinct phenomena.

The avoidance of ugly mistakes was due to our
method of limiting the number of partition points
that could be selected at any level of resolution,
or in any nelighborhood of a selected point (f.e.,
limiting the explanation complexity). One concept
we 1invoked here, related to that of complete
explanation, was that the detection procedure could
not be trusted to provide an adequate explanation
when more than a single critical point was in its
field of view, and in such a situation, any
decision was deferred to later iteratfons at higher
levels of resolution (i.e., shorter stick lengths).

Finally, in accord with our previous
discussion, the algorithm has two free parameters
that provide control over its definition of noise
(f.e., variations too small or too close together
to be of interest), and its willingness to miss a
good partition point so as to be sure it does not
select a bad one.
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B. Curve Partitioning Based and Detecting Process

Homogenity

To match human performance in partitioaning a
curve, by recognizing those locations at which one
generating process terminates and another begins,
is orders of magnitude more difficult than
partitioning based on local discontinuity analysis.
As noted earlier, a critical aspect of such
performance {s the size and effectiveness of the
vocabulary (of a priori models) employed.
Explicitly providing a general purpose vocabulary
to the machine would entail an unreasonably large
amount of work —- we hypothesize that the only
effective way of allowing a machine to acquire such
knowledge is to provide ({t with a 1learning

capability.
For our purposes 1in this 1investigation, we
chose a problem in which the relevant vocabulary

was extremely limited: the curves to be partitioned
are composed exclusively of straight lines and arcs
of circles. (Two specific applications we were
interested 1n here were the decomposition of
silhouettes of industrial parts, and the
decomposition of the line scans returned by a
"structured light” ranging device viewing scenes
containing various diameter cylinders and planar

faced objects lying on a flat surface.) Our goal
here was to develop a procedure for locating
critical points along a curve in such a way that

the segments between the critical points would be
gsatisfactorily modeled by either a straight-line
segment or a circular arec. Relevant work
addressing this problem has been done by Montanari
(1970], Ramer [1972), Pavlidis [1974], Liao [1981],
and Lowe [1982].

Our approach is to analyze several "views” of
a curve, construct a list of possible critical
points, and then select the optimum points between
which models from our vocabulary can be fitted.
For our experiments we quantized an analytic curve
at several positions and orientations (with respect
to a pixel grid), then attempted to recover the
original model.

For each view (quantization) of the curve we
locate occurrences of lines and arcs, marking their
ends as prospective partition points. This is
accomplished by randomly selecting small seed
segments from the curve, fitting to them a line or
arc, examining the fit, and then extending as far
as possible those models that exhibit a good fit.
After a large number of seeds have been explored in
the different views of the curve, the histogram
(frequency count as a function of path length) of
beginnings and endings 1is used to suggest critical
points (in order of their frequency of occurrence).
Each new critical point, considered for inclusion
in the explanation of how the curve is constructed,
introduces two new segments which are compared to
both our line and circle models. If one or both of

the segments have acceptable fits, the
corresponding curve segments are marked as
explained. Otherwise, the segments are left to be
explained by additional critical points and the
partitions they 1{mply. The addition of critical
points continues until the complete curve is
explained. Figure 5 shows an example of the

operation of this algorithm.

While admittedly operating 1in a relatively
simple environment, the above algorithm exhibits
excellent performance. This 1s true even in the
difficult case of finding partition points along
the smooth interface between a straight line and a

circle to which the line is tangent.

Both basic principles, stability and complete
explanation, are deeply embedded in this algorithm.
Retaining only those partition points which persist
under different “"viewpoints” was motivated by the
principle of stabilfty. Our technique for
evaluating the fit of the segment of a curve
between two partition points, to both the line and
circle models, requires that the deviations from an
acceptable model have the characteristics of
“"white” (random) noise; this is an instantiation of
the principle of complete explanation, and is based
on our previous work presented in Bolles [1982].

Vi DISCUSSION

We can summarize our key points as follows:

* The partition problem does not have a
unique definition, but 1s parameterized
with respect to such items as purpose, data
representation, trade-off between different
error types (false-alarms vs misses), etc.

* Pgychologically acceptable partitions are
asgoclated with an {mplied explanation that

must satisfy criteria for accuracy,
complexity, and believability. These
criteria can be formulated in terms of a
set of principles, which, 1in turn, can
guide the construction of effective

partitioning algorithms (i.e., they provide
necessary conditions).

One implication contained in these
observations is that a purely mathematical
definition of “intrinsic structure” (i.e., a
definition  justified solely by appeal to
mathematical criteria or principles) cannot, by
itself, be sufficiently selective to serve as a
basis for duplicating human performance 1in the
partitioning task; generic partitioning (i.e.,

partitioning in the absence of semantic content) is
based on psychological “laws” and physiological
mechanisms, as well as on correlations embedded in
the data.

In this paper we have looked at a very limited
subset of the class of all scene partitioning
problems; nevertheless, it is 1interesting to
speculate on how the human performs so effectively
in the broader domain of interpreting single images
of uwitural scenes. The speed of response in the
humans ability to interpret a sequence of images of
dissimilar scenes makes it highly questionable that
there is some mechanism by which he simultaneously
matches all his semantic primitives against the
imaged data, even If we assume that some
independent process has already presented him with
a "camera model” that resolves some of the
uncertainties 1in image scale, orientation, and
projective distortion. How does the human index

[P SO,
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To match human performance in partitioning a
curve, by recognizing those locations at which one
generating process terminates and another begins,
is orders of magnitude more difficult than
partitioning based on local discontinuity analysis.
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vocabulary (of a priori models) employed.
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to the machine would entail an unreasonably large
amount of work -- we hypothesize that the only
effective way of allowing a machine to acquire such
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capability.
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of circles. (Two specific applications we were
interested here were the decomposition of
silhouettes of industrial parts, and the
decomposition of the line scans returned by a
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containing various diameter cylinders and planar
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addressing this problem has been done by Montanari
[1970]), Ramer (1972), Pavlidis [1974], Liao [1981],
and Lowe [1982].

in

Our approach is to analyze several “"views" of
a curve, construct a list of possible critical
points, and then select the optimum points between
which models from our vocabulary can be fitted.
For our experiments we quantized an analytic curve
at several positions and orientations (with respect
to a pixel grid), then attempted to recover the
original model.

For each view (quantization) of the curve we
locate occurrences of lines and arcs, marking their
ends as prospective partition points. This is
accomplished by randomly selecting small seed
segments from the curve, fitting to them a line or
arc, examinfing the fit, and then extending as far
as possible those models that exhibit a good fit.
After a large number of seeds have been explored in
the different views of the curve, the histogran
(frequency count as a function of path length) of
beginnings and endings 1is used to suggest critical
points (in order of their frequency of occurrence).
Each new critical point, considered for inclusion
in the explanation of how the curve is constructed,
introduces t(wo new segments which are compared to
both our line and circle models. 1If one or both of
the gegments have acceptable fits, the
corresponding curve segments are marked as
explained. Otherwise, the segments are left to be
explained by additional critical points and the
partitions they {mply. The addition of critical

points continues wuntil the complete curve {is
explained. Figure 5 shows an example of the
operation of this algorithm.
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In this paper we have looked at a very limited
subset of the class of all scene partitioning
problenms; nevertheless, 1t is {nteresting to
speculate on how the human performs so effectively
in the broader domain of interpreting single images
of natural scenes. The speed of response in the
humans ability to {nterpret a sequence of images of
dissimilar scenes makes it highly questionable that
there is some wmechanism by which he simultaneously
matches all his semantic primitives against the
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into the large semantic data base to find the
appropriate models for the scene at hand?

Consider the following paradigm: first a set
ot coherent components 1s recovered from the image
on the basis of very general (but parameterized)
clustering criteria of the type described earlier;
next, a relatively small set of semantic models,
which are components of many of the objects in the
complete semantic vocabulary, are matched against
the extracted clusters; successful matches are then
used to 1index 1into the full data base and the
corresponding entries are matched againat both the
extracted clusters and adjacent scene components;
these additional successful matches will now
trigger both 1iconic and symbolic associations that
result in further matching possibilities as well as
perceptual hypotheses that organize large portions
of the image into coherent structures (gestalt
phenomena).

If this paradigm is valid, then, even though
much of the perceptual process would depend on an
{ndividual”s personal experience and immediate
goals, we might still expect “"hard wired”
algorithms (genetically programmed, but with
ad justable parameters) to be employed in the
inftial partitioning steps.

In this paper, we have attempted to give
computational definitions to some of the organizing
criteria needed to approach human level performance
in the partitioning task. However, we believe that
our more important contribution has been the
explicit formulation of a set of principles that we
asgsert must be satisfied by any effective procedure
for perceptual grouping.
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TASK 11 Select AT MOST 5 pomts to describe this ine drawing so that
you will be able to reconstruct 1t as well as possible 10 years
trom now, given just the sequence of selected points

Sinice five pornts were sutficient 1o form an approximate convex hull
ot the tigure, vittually everyone did so, selecting the & pomts shown below

Ao

TASK 2:  Assume that a triend of yours is going to be asked to recognize
this hine drawing on the basis of the information you suppty bim
about 1. He will be presented with a set ot drawings, one of
which will be a rotated and scaled version ot this curve. You are
only allowed to provided him with A SEQUENCE OF AT MOST
5 POINTS. Mark the points you would select.

Since S points were hot enough to outline all the key features of the
figure, the subjects had to decide what to feave out. They seemed to adopt
one of two general strategies {3) use the limited number of points to describe
one distinct feature well (iffustrated by the selection an the left) or (b) use
the points to outline the basic shape of the figure (shown on the right}
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TASK 3:  This line drawing was constructed by piecing together segments
produced by ditferent processes Please indicate whery you think
the junctions between segments occur AND VERY BRIEFLY
DESCRIBE EACH SEGMENT Use as few pomnts as possible,
but no more than 5

The constraint of being hmited to 5 points forced the subjects to con
sider the whole curve and develop a consistent, global explaration The
basic strategy seemed to be a recursive one in which they tirst partitioned the
curve into 2 segments by placing a breakpoint at posiion 1 and another one
at either position 2 ar position 3 to separate the smooth curves from the
sharp corners. Then they used the remaiming points to subdivide these seq
ments according to & vocabulary they selected that included such things as
triangles, rectangles, and sinusoids. For example, almost everyone placed
breakpoints at positions 3 and 4 and described the enclosed segment as part
of a tnangle Similarly the segment between positions T and 5 was generally
described as a decaying sinusoid. it 15 interesting to note that in task 1 the
subjects consistently placed a point close ta position 5 but always farther to
the nght, because they were trying to approximate a convex hull The dif
terent purposes led to ditferent placements.
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FIGURE 1 EXPERIMENTS IN WHICH HUMAN SUBJECTS

WERE ASKED TO SEGMENT A CURVE

n-7

(a} This figure shows the resulfts of applying the “improved angle detection’
procedure described 1n Rosenteld [1975! tu a digitized version of the
curve n Figure ¥ The procedure works quite well except tor the intio
duction ot a breakpoint 'n the middle ot the nght side and the merging
of two smalt bumps at the tight of the sinusosdal segment.

(b) However, if we extract a portion of the cutve and apply the algorithm
1t introduces several additional breakpoints because the change in curve
length causes some of the algonithm parameters to chdnge

FIGURE 2 ESTIMATION OF CURVATURE FROM
DISCRETE APPROXIMATIONS
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FIGURE 3

EXAMPLE CURVE SEGMENTS AND
THEIR CLASSIFICATIONS
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